Critical care: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Meg Taylor
No edit summary
m (Fixed ref errors)
Line 36: Line 36:
A lower oxygenation index indicates better gas exchange. The oxygenation index, which includes the mean airway pressure<ref name="pmid1395670">{{cite journal| author=Marini JJ, Ravenscraft SA| title=Mean airway pressure: physiologic determinants and clinical importance--Part 1: Physiologic determinants and measurements. | journal=Crit Care Med | year= 1992 | volume= 20 | issue= 10 | pages= 1461-72 | pmid=1395670  
A lower oxygenation index indicates better gas exchange. The oxygenation index, which includes the mean airway pressure<ref name="pmid1395670">{{cite journal| author=Marini JJ, Ravenscraft SA| title=Mean airway pressure: physiologic determinants and clinical importance--Part 1: Physiologic determinants and measurements. | journal=Crit Care Med | year= 1992 | volume= 20 | issue= 10 | pages= 1461-72 | pmid=1395670  
| url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=1395670 }} <!--Formatted by http://sumsearch.uthscsa.edu/cite/--></ref><ref name="pmid1424706">{{cite journal| author=Marini JJ, Ravenscraft SA| title=Mean airway pressure: physiologic determinants and clinical importance--Part 2: Clinical implications. | journal=Crit Care Med | year= 1992 | volume= 20 | issue= 11 | pages= 1604-16 | pmid=1424706  
| url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=1395670 }} <!--Formatted by http://sumsearch.uthscsa.edu/cite/--></ref><ref name="pmid1424706">{{cite journal| author=Marini JJ, Ravenscraft SA| title=Mean airway pressure: physiologic determinants and clinical importance--Part 2: Clinical implications. | journal=Crit Care Med | year= 1992 | volume= 20 | issue= 11 | pages= 1604-16 | pmid=1424706  
| url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=1424706 }} <!--Formatted by http://sumsearch.uthscsa.edu/cite/--></ref>, may better correlate with intrapulmonary shunting than the PF ratio<ref name="pmid14769743">{{cite journal| author=El-Khatib MF, Jamaleddine GW| title=A new oxygenation index for reflecting intrapulmonary shunting in patients undergoing open-heart surgery. | journal=Chest | year= 2004 | volume= 125 | issue= 2 | pages= 592-6 | pmid=14769743
| url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=1424706 }} <!--Formatted by http://sumsearch.uthscsa.edu/cite/--></ref>, may better correlate with intrapulmonary shunting than the PF ratio<ref name="pmid14769743"/>
| url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=14769743 }} <!--Formatted by http://sumsearch.uthscsa.edu/cite/--></ref>


;Alveolar-arterial oxygen (A-a) gradient (alveolar-arterial oxygen difference - AVO<sub>2</sub>D)
;Alveolar-arterial oxygen (A-a) gradient (alveolar-arterial oxygen difference - AVO<sub>2</sub>D)
Line 68: Line 67:


;Lactate clearance
;Lactate clearance
Maintaining lactate clearance about 10% may be an easier alternative than invasive measurements of oxygenation according to a [[randomized controlled trial]] by [http://www.emshocknet.com/ EMShockNet].<ref name="pmid20179283">{{cite journal| author=Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA et al.| title=Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. | journal=JAMA | year= 2010 | volume= 303 | issue= 8 | pages= 739-46 | pmid=20179283
Maintaining lactate clearance about 10% may be an easier alternative than invasive measurements of oxygenation according to a [[randomized controlled trial]] by [http://www.emshocknet.com/ EMShockNet].<ref name="pmid20179283"/>
| url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=clinical.uthscsa.edu/cite&email=badgett@uthscdsa.edu&retmode=ref&cmd=prlinks&id=20179283 | doi=10.1001/jama.2010.158 }} <!--Formatted by http://sumsearch.uthscsa.edu/cite/--></ref>
:<math>\text{Lactate clearance} = \left(\frac{lactate_{initial} - lactate_{two\ hours}}{lactate_{initial}}\right) \times 100</math>
:<math>\text{Lactate clearance} = \left(\frac{lactate_{initial} - lactate_{two\ hours}}{lactate_{initial}}\right) \times 100</math>


Line 96: Line 94:
===Circulatory support===
===Circulatory support===
{{main|Vasoconstrictor agent|Cardiotonic agent}}
{{main|Vasoconstrictor agent|Cardiotonic agent}}
Goal-directed  resuscitation has been developed and so far studies for the resuscitation of [[septic shock]]:<ref  name="pmid20179283">{{cite journal|  author=Jones AE, Shapiro  NI, Trzeciak S, Arnold RC, Claremont HA, Kline  JA et al.| title=Lactate  clearance vs central venous oxygen saturation  as goals of early sepsis  therapy: a randomized clinical trial. |  journal=JAMA | year= 2010 |  volume= 303 | issue= 8 | pages= 739-46 |  pmid=20179283
Goal-directed  resuscitation has been developed and so far studies for the resuscitation of [[septic shock]]:<ref  name="pmid20179283"></ref>
| url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=clinical.uthscsa.edu/cite&email=badgett@uthscdsa.edu&retmode=ref&cmd=prlinks&id=20179283  | doi=10.1001/jama.2010.158 }}  <!--Formatted by http://sumsearch.uthscsa.edu/cite/--></ref><ref name="pmid11794169">{{cite journal| author=Rivers E, Nguyen B,  Havstad S, Ressler J, Muzzin A, Knoblich B et al.| title=Early  goal-directed therapy in the treatment of severe sepsis and septic  shock. | journal=N Engl J Med | year= 2001 | volume= 345 | issue= 19 |  pages= 1368-77 | pmid=11794169
| url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=clinical.uthscsa.edu/cite&email=badgett@uthscdsa.edu&retmode=ref&cmd=prlinks&id=11794169  }}  [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=clinical.uthscsa.edu/cite&email=badgett@uthscdsa.edu&retmode=ref&cmd=prlinks&id=11985431  Review in: ACP J Club. 2002 May-Jun;136(3):90] <!--Formatted  by http://sumsearch.uthscsa.edu/cite/--></ref>
# "Isotonic crystalloid was administered in boluses to achieve a central venous pressure of 8 mm Hg or higher"
# "Isotonic crystalloid was administered in boluses to achieve a central venous pressure of 8 mm Hg or higher"
# "Mean  arterial pressure goal of 65 mm Hg or higher, if not achieved with fluid administration, was targeted by initiating and titrating [[vasoconstrictor agent|vasopressors]] ([[dopamine]]  or [[norepinephrine]])"<ref name="pmid20179283"/> or goal of 65  mm Hg to 90 mm Hg<ref name="pmid11794169"/>
# "Mean  arterial pressure goal of 65 mm Hg or higher, if not achieved with fluid administration, was targeted by initiating and titrating [[vasoconstrictor agent|vasopressors]] ([[dopamine]]  or [[norepinephrine]])"<ref name="pmid20179283"/> or goal of 65  mm Hg to 90 mm Hg<ref name="pmid11794169"/>
Line 151: Line 147:
|}
|}


[[Antipsychotic agent]]s, in a small study, found that an average of 15 mgs per day of [[haloperidol]] and 113 mg per day of [[ziprasidone]] increased [[akathisia]] (see table for benefits which did not have [[statistical significance]]).<ref name="pmid20095068">{{cite journal| author=Girard TD,  Pandharipande PP, Carson SS, Schmidt GA, Wright PE, Canonico AE et al.|  title=Feasibility, efficacy, and safety of antipsychotics for intensive  care unit delirium: the MIND randomized, placebo-controlled trial. |  journal=Crit Care Med | year= 2010 | volume= 38 | issue= 2 | pages=  428-37 | pmid=20095068
[[Antipsychotic agent]]s, in a small study, found that an average of 15 mgs per day of [[haloperidol]] and 113 mg per day of [[ziprasidone]] increased [[akathisia]] (see table for benefits which did not have [[statistical significance]]).<ref name="pmid20095068"/>
| url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=clinical.uthscsa.edu/cite&email=badgett@uthscdsa.edu&retmode=ref&cmd=prlinks&id=20095068  }} <!--Formatted  by http://sumsearch.uthscsa.edu/cite/--></ref>
 
===Glucose control===
===Glucose control===
Two [[clinical practice guideline]]s are available for patients with ; however, both of these guidelines were developed without broad representation of stakeholders.<ref name="pmid11330080">{{cite journal |author=Mulrow CD, Lohr KN |title=Proof and policy from medical research evidence |journal=J Health Polit Policy Law |volume=26 |issue=2 |pages=249–66 |year=2001 |month=April |pmid=11330080 |doi= |url=http://jhppl.dukejournals.org/cgi/pmidlookup?view=long&pmid=11330080 |issn=}}</ref> This may lead to overly aggressive clinical recommendations. In addition, these guidelines were published before the two recent negative trials.
Two [[clinical practice guideline]]s are available for patients with ; however, both of these guidelines were developed without broad representation of stakeholders.<ref name="pmid11330080">{{cite journal |author=Mulrow CD, Lohr KN |title=Proof and policy from medical research evidence |journal=J Health Polit Policy Law |volume=26 |issue=2 |pages=249–66 |year=2001 |month=April |pmid=11330080 |doi= |url=http://jhppl.dukejournals.org/cgi/pmidlookup?view=long&pmid=11330080 |issn=}}</ref> This may lead to overly aggressive clinical recommendations. In addition, these guidelines were published before the two recent negative trials.

Revision as of 16:48, 17 June 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Critical care medicine is the "health care provided to a critically ill patient during a medical emergency or crisis".[1] It may be provided in intensive care units, "stepdown" hospital wards, emergency rooms, and in field medicine.

Monitoring the critically ill patient

Several measures are available based on blood gas analysis.

Circulation

Pulmonary artery catheterization

Among patients with acute lung injury, the use of pulmonary artery catheterization (Swan-Ganz catheterization) did not improve outcomes over monitoring with central venous catheterization.[2]

Inferior vena cava ultrasonography

Ultrasonography of the inferior vena cava may help detect low central venous pressure. The caval index is the relative decrease in diameter between expiration and inspiration. If the caval index is 50%, then a central venous pressure of < 8 mm Hg is detected with:[3]

Respiration and oxygenation

PaO2/FiO2 ratio (PF ratio)
For more information, see: P:F ratio.

An example in a healthy person:

A higher ratio indicates better gas exchange:

  • Normal is 500
  • ARDS is < 200

Comparative studies suggest this measure correlates better with pulmonary shunts than does the A-a gradient.[4][5][6]

Oxygenation index

or

A lower oxygenation index indicates better gas exchange. The oxygenation index, which includes the mean airway pressure[7][8], may better correlate with intrapulmonary shunting than the PF ratio[5]

Alveolar-arterial oxygen (A-a) gradient (alveolar-arterial oxygen difference - AVO2D)
  • Normal is < 10 mm Hg

The A-a gradient is harder to calculate, but accounts for changes in respiration as measured by the partial pressure of carbon dioxide. However, this calculation relies on the respiratory quotient being constant in the prediction of alveolar CO2 When compared to the PF ratio, the A-a gradient is found to correlate less well with pulmonary shunting.[4][5][6]

Among outpatients with possible pulmonary embolism, the A-a gradient may be a better test.[9]

An online calculator for the A-a gradient is at http://www.mdcalc.com/aagrad.

Tissue perfusion

Central venous oxygen saturation (ScvO2)

In patients with septic shock, maintaining the central venous oxygen saturation (ScvO2) > 70% is a health care quality assurance measure for the Institute for Healthcare Improvement.[10] This is measured from the superior vena cava. This is hard to predict by physical examination.[11]

Mixed venous oxygen saturation (SvO2)

In patients with septic shock, maintaining the mixed venous oxygen saturation (ScvO2) > 65% is a health care quality assurance measure for the Institute for Healthcare Improvement that is an alternative to the central venous oxygen saturation.[12] This is measured from a pulmonary artery catheter. This is hard to predict by physical examination.[11]

The mixed venous pressure may be lower than the central venous pressure due to mixing with blood from the splanchnic circulation or carotid sinuses that has lower oxygen content.[13]

Tissue oxygen saturation (StO2)

Tissue oxygen saturation (StO2) at the thenar eminence may be an alternative, non-invasive measurement.[14][15]

Lactate clearance

Maintaining lactate clearance about 10% may be an easier alternative than invasive measurements of oxygenation according to a randomized controlled trial by EMShockNet.[16]

Capnography

Capnography, which is "continuous recording of the carbon dioxide content of expired air,"[17] may detect respiratory depression before hypoxemia occurs.[18] Proposed criteria for respiratory depression are:[18]

  • End tidal CO2 (ETCO2) level 50 mm Hg
  • ETCO2 change from baseline of 10%
  • Loss of waveform for 15 seconds

Real time glucose monitoring

Real-time glucose monitoring does not clearly help control the blood glucose level.[19]

Treatments provided in the intensive care unit

Goal-directed resuscitation

Protocols for the resuscitation of septic shock are:[16][20]

  1. "Isotonic crystalloid was administered in boluses to achieve a central venous pressure of 8 mm Hg or higher"
  2. "Mean arterial pressure goal of 65 mm Hg or higher, if not achieved with fluid administration, was targeted by initiating and titrating vasopressors (dopamine or norepinephrine)"[16] or goal of 65 mm Hg to 90 mm Hg[20]
  3. If ScvO2 < 70% or lactate clearance < 10%

Circulatory support

For more information, see: Vasoconstrictor agent and Cardiotonic agent.

Goal-directed resuscitation has been developed and so far studies for the resuscitation of septic shock:[16]

  1. "Isotonic crystalloid was administered in boluses to achieve a central venous pressure of 8 mm Hg or higher"
  2. "Mean arterial pressure goal of 65 mm Hg or higher, if not achieved with fluid administration, was targeted by initiating and titrating vasopressors (dopamine or norepinephrine)"[16] or goal of 65 mm Hg to 90 mm Hg[20]
  3. If ScvO2 < 70% or lactate clearance < 10%

Renal support

For more information, see: Renal replacement therapy.


Respiratory support

For more information, see: Artificial respiration.

Surgical and trauma critical care

The standard of care for fluid replacement after traumatic injury continues to evolve. Permissive hypotension is increasingly preferred in most situations: giving enough fluid to return the systolic blood pressure to approximately 100mm, but not to return it to normal. Raising the pressure to normal levels may also raise the pressure enough to disrupt clots and restart hemorrhaging.

Routine use of vasopressors in trauma uncomplicated by disease is discouraged; a surgical maxim is that the treatment for traumatic hypotension is surgery, not drugs.

An important exception to permissive hypotension is the field management of crush injury. In this case, fluid overload, as well as alkalinization, is necessary to protect the kidneys and other organs from the rush of muscle breakdown products when the flow-occluding pressure of a heavy object is removed.

Complications

Abdominal compartment syndrome

Abdominal compartment syndrome is associated with increased mortality.[21]

Medical error

For more information, see: Medical error.

Examining errors in administration of parenteral medications, a study found:[22]

  • 74 errors per 100 patient-days
  • Independent risk factors were:
    • Patient complexity as measured by
      • number of organ failures
      • number of parenteral administrations
    • Work load as measured by
      • Larger intensive care unit
      • Increased ratio of patient turnover to the size of the unit
      • Number of patients per nurse
      • Occupancy rate of the unit

Preventing complications in the critically ill patient

Delirium

Antipsychotic agents to reduce the number of days mechanically ventilated patients were alive without delirium[23]
Drug Number of days
Haloperidol 14.0
Ziprasidone 15.0
Placebo 12.5
P = 0.66

Antipsychotic agents, in a small study, found that an average of 15 mgs per day of haloperidol and 113 mg per day of ziprasidone increased akathisia (see table for benefits which did not have statistical significance).[23]

Glucose control

Two clinical practice guidelines are available for patients with ; however, both of these guidelines were developed without broad representation of stakeholders.[24] This may lead to overly aggressive clinical recommendations. In addition, these guidelines were published before the two recent negative trials.

The American Association of Clinical Endocrinologists (AACE) recommends the following target blood glucose levels:[25]

  • "Critically ill patients, between 80 to 110 mg/dL (grade A recommendation)"

The American Diabetes Association (ADA) states[26]

  • "Critically ill patients: blood glucose levels should be kept as close to 110 mg/dl (6.1 mmol/l) as possible and generally <140 mg/dl (7.8 mmol/l). (A) These patients require an intravenous insulin protocol that has demonstrated efficacy and safety in achieving the desired glucose range without increasing risk for severe hypoglycemia. (E)"

Evidence

Randomized controlled trials of tight glucose control in the critical care and perioperative care settings have produced mixed results. See Table.

Meta-analyses of these trials exist:

  • Meta-analysis in 2011 of 21 trials was negative.[27]
  • Meta-analysis in 2010 of 7 trials was negative.[28]
  • Meta-analysis in 2009 of 26 trials was negative.[29]
  • Meta-analysis in 2009 of 29 trials was negative.[30]
Selected randomized controlled trials of glucose control in critical care[31][32][33][34] [35][36]
Trial Patients Intervention Comparison Outcomes Results Authors' conclusions
Intensive control Control group
COIITSS Study[31]
2010
509 adults with septic shock Insulin targeting serum glucose of 80 to 110 mg/dl 2004 Surviving Sepsis Campaign guidelines[37] In-hospital mortality 45.9% * 42.9% "intensive insulin therapy did not improve in-hospital mortality "
NICE-SUGAR[32]
2009
6104 patients in medical and surgical ICU Insulin drip targeting serum glucose of 81 to 108 mg/dl Insulin drip targeting serum glucose of 144 - 180 mg/dl Mortality at 90 days 27.5% * 24.9% "intensive glucose control increased mortality among adults in the ICU"
Arabi et al[33]
2008
523 patients in medical and surgical ICU Insulin drip targeting serum glucose of 80 to 110 mg/dl Insulin drip targeting serum glucose of 180 to 200 mg/dl Mortality in the intensive care unit 13.5% 17.1 "Intensive insulin therapy was not associated with improved survival...and was associated with increased occurrence of hypoglycemia"
SepNet[34]
2008
537 patients with severe sepsis Insulin drip if needed to target serum glucose of 80 to 110 mg/dl Insulin drip if needed to target serum glucose of < 200 mg/dl Mortality in the intensive care unit 24.7% 26% "intensive insulin therapy placed critically ill patients with sepsis at increased risk for serious adverse events"
Van den Berghe[35]
2006
1200 patients in medical ICU Insulin drip targeting serum glucose of 80 to 110 mg/dl Insulin drip targeting serum glucose of 180 to 200 mg/dl Hospital mortality 37.3% 40% "Intensive insulin therapy significantly reduced morbidity but not mortality"
Van den Berghe[36]
2001
1548 patients in surgical ICU Insulin drip targeting serum glucose of 80 to 110 mg/dl Insulin drip targeting serum glucose of 180 to 200 mg/dl Mortality in the intensive care unit 4.6% * 8% "Intensive insulin therapy...reduces morbidity and mortality"
Notes:
* Significantly different from the control group.

Two of the trials in the Table suggested benefit (see green cells):

  • Van den Berghe 2006[35]. Although this trial concluded "intensive insulin therapy significantly reduced morbidity but not mortality among all patients in the medical ICU. Although the risk of subsequent death and disease was reduced in patients treated for three or more days" the trial stated "these patients could not be identified before therapy."[35]
  • Van den Berghe 2002[36]. This trial has been criticized for the following reasons:[38]
  1. "The trial was stopped early for an unexpectedly large treatment effect, which can overestimate the efficacy of treatment or result in a false-positive finding;"
  2. "The relative reduction in mortality for a decrease of 50 mg/dL in morning glucose levels seems biologically implausible and exceeds that for any other intervention in critically ill patients;"
  3. "The mortality rate in the control group was much higher than that noted in tertiary care medical centers in the United States. On admission to the ICU, all patients received 200 to 300 g/d of intravenous dextrose followed by enteral or parenteral nutrition, an unusual practice considering the deleterious effects of parenteral nutrition; at least in part, the difference in outcomes between the 2 arms in this study might have reflected the harm of maintaining the control group as hyperglycemic rather than the benefit of strict glucose control in the intervention group."

Tight control may protect renal function.[39]

Regarding intraoperative control of glucose, a randomized controlled trial concluded "the increased incidence of death and stroke in the intensive treatment group raises concern about routine implementation of this intervention."[40]

Preventing anemia

Blood transfusion

Clinical practice guidelines

Clinical practice guidelines by the Eastern Association for Surgery of Trauma and the American College of Critical Care Medicine include blood transfusions recommendations for:[41]

  1. "patients with evidence of hemorrhagic shock"
  2. "patients with evidence of acute hemorrhage and hemodynamic instability or inadequate" oxygenation
  3. "A “restrictive” strategy of RBC transfusion (transfuse when Hb < 7 g/dL) is as effective as a 'liberal' transfusion strategy (transfusion when Hb < 10 g/dL) in critically ill patients with hemodynamically stable anemia, except possibly in patients with acute myocardial ischemia."
  4. "The use of only Hb level as a 'trigger' for transfusion should be avoided"
  5. "In the absence of acute hemorrhage, RBC transfusion should be given as single units"
  6. "Consider transfusion if Hb is <7 g/dL in critically ill patients requiring mechanical ventilation"
  7. "Consider transfusion if Hb is <7 g/dL in resuscitated critically ill trauma patients"
  8. "Consider transfusion if Hb is <7 g/dL in critically ill patients with stable cardiac disease"
  9. "RBC transfusion should not be considered as an absolute method to improve tissue oxygen consumption in critically ill patients."
  10. "RBC transfusion may be beneficial in patients with acute coronary syndromes (ACS) who are anemic (Hb < 8 g/dL) on hospital admission"
  11. "The transfusion needs for each septic patient must be assessed individually because optimal transfusion triggers in sepsis patients are not known and there is no clear evidence that blood transfusion increases tissue oxygenation"
  12. "All efforts should be initiated to avoid RBC transfusion in patients at risk for ALI and ARDS after completion of resuscitation."
Trials

There may not be a meaningful difference in outcomes between transfusing blood to maintain a hemoglobin > 7.0 g/dl versus a hemoglobin > 10.0 g/dl.[42]

Erythropoietin

A randomized controlled trial reported "epoetin alfa does not reduce the incidence of red-cell transfusion among critically ill patients, but it may reduce mortality in patients with trauma. Treatment with epoetin alfa is associated with an increase in the incidence of thrombotic events."[43]

Selective gastrointestinal decontamination

Systematic reviews conclude that selective decontamination of the digestive tract may reduce morbidity in critically ill patients[44][45][46] although some randomized controlled trials have[47][48][49] and others have not found benefit[50].

Preventing gastrointestinal tract ulceration

Preventing deep venous thrombosis

For more information, see: Deep venous thrombosis.


Preventing healthcare-associated pneumonia

Preventing posttraumatic stress disorder

Light sedation (patient awake and cooperative) may be more effective than deep sedation (patient asleep, awakening upon physical stimulation).[51]

Medical error in the intensive care

For more information, see: medical error.

Regarding overlooked diagnosis among patients receiving artificial respiration in the intensive care, an autopsy study concluded "abdominal pathologic conditions--abscesses, bowel perforations, or infarction--were as frequent as pulmonary emboli as a cause of class I errors. While patients with abdominal pathologic conditions generally complained of abdominal pain, results of examination of the abdomen were considered unremarkable in most patients, and the symptom was not pursued." [52]

Predicting outcomes of adult patients

Although there is much research into prognosing patients in intensive care, patients are not very confident in thei accuracy of prognoses.[53]

Apache II score

For more information, see: APACHE II.

The APACHE II is available at http://www.sfar.org/scores2/apache22.html.

SAPS II

CIS

The cellular injury score (CIS) can describe multiple organ dysfunction syndrome.[55]

FOUR

The FOUR (Full Outline of UnResponsiveness) score may be better than the Glasgow Coma Scale (GCS) in prognosticating patients in coma.[56] The FOUR Score tests:

  • eye response
  • motor response
  • brainstem reflexes
  • respiration pattern

SOFA

The Sepsis-related Organ Failure Assessment (SOFA) score can describe multiple organ dysfunction syndrome.[57][55]

References

  1. Anonymous. Critical care. National Library of Medicine. Retrieved on 2008-01-07.
  2. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP et al. (2006). "Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury.". N Engl J Med 354 (21): 2213-24. DOI:10.1056/NEJMoa061895. PMID 16714768. Research Blogging. Review in: ACP J Club. 2006 Nov-Dec;145(3):70
  3. Nagdev AD, Merchant RC, Tirado-Gonzalez A, Sisson CA, Murphy MC (2010). "Emergency department bedside ultrasonographic measurement of the caval index for noninvasive determination of low central venous pressure.". Ann Emerg Med 55 (3): 290-5. DOI:10.1016/j.annemergmed.2009.04.021. PMID 19556029. Research Blogging.
  4. 4.0 4.1 Covelli HD, Nessan VJ, Tuttle WK (1983). "Oxygen derived variables in acute respiratory failure". Crit. Care Med. 11 (8): 646–9. PMID 6409506[e]
  5. 5.0 5.1 5.2 El-Khatib MF, Jamaleddine GW (2004). "A new oxygenation index for reflecting intrapulmonary shunting in patients undergoing open-heart surgery". Chest 125 (2): 592–6. PMID 14769743[e]
  6. 6.0 6.1 Cane RD, Shapiro BA, Templin R, Walther K (1988). "Unreliability of oxygen tension-based indices in reflecting intrapulmonary shunting in critically ill patients". Crit. Care Med. 16 (12): 1243–5. PMID 3191742[e]
  7. Marini JJ, Ravenscraft SA (1992). "Mean airway pressure: physiologic determinants and clinical importance--Part 1: Physiologic determinants and measurements.". Crit Care Med 20 (10): 1461-72. PMID 1395670.
  8. Marini JJ, Ravenscraft SA (1992). "Mean airway pressure: physiologic determinants and clinical importance--Part 2: Clinical implications.". Crit Care Med 20 (11): 1604-16. PMID 1424706.
  9. McFarlane MJ, Imperiale TF (1994). "Use of the alveolar-arterial oxygen gradient in the diagnosis of pulmonary embolism". Am. J. Med. 96 (1): 57–62. PMID 8304364[e]
  10. Maintain Adequate Central Venous Oxygen Saturation Institute for Healthcare Improvement
  11. 11.0 11.1 Grissom CK, Morris AH, Lanken PN, Ancukiewicz M, Orme JF, Schoenfeld DA et al. (2009). "Association of physical examination with pulmonary artery catheter parameters in acute lung injury.". Crit Care Med 37 (10): 2720-6. PMID 19885995.
  12. Maintain Adequate Central Venous Oxygen Saturation Institute for Healthcare Improvement
  13. Kopterides P, Mavrou I, Kostadima E (2005). "Central or mixed venous oxygen saturation?". Chest 128 (2): 1073-4; author reply 1074-5. DOI:10.1378/chest.128.2.1073. PMID 16100219. Research Blogging.
  14. Podbregar M, Mozina H (2007). "Skeletal muscle oxygen saturation does not estimate mixed venous oxygen saturation in patients with severe left heart failure and additional severe sepsis or septic shock.". Crit Care 11 (1): R6. DOI:10.1186/cc5153. PMID 17227587. PMC PMC2147710. Research Blogging.
  15. Leone M, Blidi S, Antonini F, Meyssignac B, Bordon S, Garcin F et al. (2009). "Oxygen tissue saturation is lower in nonsurvivors than in survivors after early resuscitation of septic shock.". Anesthesiology 111 (2): 366-71. DOI:10.1097/ALN.0b013e3181aae72d. PMID 19602965. Research Blogging.
  16. 16.0 16.1 16.2 16.3 16.4 Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA et al. (2010). "Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial.". JAMA 303 (8): 739-46. DOI:10.1001/jama.2010.158. PMID 20179283. Research Blogging.
  17. Anonymous (2025), Capnography (English). Medical Subject Headings. U.S. National Library of Medicine.
  18. 18.0 18.1 Deitch K, Miner J, Chudnofsky CR, Dominici P, Latta D (2010). "Does end tidal CO2 monitoring during emergency department procedural sedation and analgesia with propofol decrease the incidence of hypoxic events? A randomized, controlled trial.". Ann Emerg Med 55 (3): 258-64. DOI:10.1016/j.annemergmed.2009.07.030. PMID 19783324. Research Blogging.
  19. Holzinger U, Warszawska J, Kitzberger R, Wewalka M, Miehsler W, Herkner H et al. (2010). "Real-Time Continuous Glucose Monitoring in Critically Ill Patients: A prospective randomized trial.". Diabetes Care 33 (3): 467-72. DOI:10.2337/dc09-1352. PMID 20007948. PMC PMC2827490. Research Blogging.
  20. 20.0 20.1 20.2 Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B et al. (2001). "Early goal-directed therapy in the treatment of severe sepsis and septic shock.". N Engl J Med 345 (19): 1368-77. PMID 11794169. Review in: ACP J Club. 2002 May-Jun;136(3):90
  21. Malbrain ML, Chiumello D, Pelosi P, et al (February 2005). "Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study". Crit. Care Med. 33 (2): 315–22. PMID 15699833[e]
  22. Valentin A, Capuzzo M, Guidet B, et al (2009). "Errors in administration of parenteral drugs in intensive care units: multinational prospective study". BMJ 338: b814. PMID 19282436[e]
  23. 23.0 23.1 Girard TD, Pandharipande PP, Carson SS, Schmidt GA, Wright PE, Canonico AE et al. (2010). "Feasibility, efficacy, and safety of antipsychotics for intensive care unit delirium: the MIND randomized, placebo-controlled trial.". Crit Care Med 38 (2): 428-37. PMID 20095068.
  24. Mulrow CD, Lohr KN (April 2001). "Proof and policy from medical research evidence". J Health Polit Policy Law 26 (2): 249–66. PMID 11330080[e]
  25. AACE Diabetes Mellitus Clinical Practice Guidelines Task Force (2007). "American Association of Clinical Endocrinologists medical guidelines for clinical practice for the management of diabetes mellitus". Endocr Pract 13 Suppl 1: 1–68. PMID 17613449[e] Complete summary from National Guidelines Clearinghouse
  26. American Diabetes Association (January 2008). "Standards of medical care in diabetes--2008". Diabetes Care 31 Suppl 1: S12–54. DOI:10.2337/dc08-S012. PMID 18165335. Research Blogging. Complete summary from National Guidelines Clearinghouse
  27. Kansagara D, Fu R, Freeman M, Wolf F, Helfand M (2011). "Intensive insulin therapy in hospitalized patients: a systematic review.". Ann Intern Med 154 (4): 268-82. DOI:10.1059/0003-4819-154-4-201102150-00008. PMID 21320942. Research Blogging.
  28. Marik PE, Preiser JC (2010). "Toward understanding tight glycemic control in the ICU: a systematic review and metaanalysis.". Chest 137 (3): 544-51. DOI:10.1378/chest.09-1737. PMID 20018803. Research Blogging.
  29. Griesdale DE, de Souza RJ, van Dam RM, Heyland DK, Cook DJ, Malhotra A et al. (2009). "Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data.". CMAJ 180 (8): 821-7. DOI:10.1503/cmaj.090206. PMID 19318387. PMC PMC2665940. Research Blogging. Review in: Ann Intern Med. 2009 Aug 18;151(4):JC2-4, JC2-5
  30. Wiener RS, Wiener DC, Larson RJ (2008). "Benefits and risks of tight glucose control in critically ill adults: a meta-analysis.". JAMA 300 (8): 933-44. DOI:10.1001/jama.300.8.933. PMID 18728267. Research Blogging. Review in: Evid Based Nurs. 2009 Apr;12(2):51 Review in: Ann Intern Med. 2009 Jan 20;150(2):JC1-5
  31. 31.0 31.1 COIITSS Study Investigators. Annane D, Cariou A, Maxime V, Azoulay E, D'honneur G et al. (2010). "Corticosteroid treatment and intensive insulin therapy for septic shock in adults: a randomized controlled trial.". JAMA 303 (4): 341-8. DOI:10.1001/jama.2010.2. PMID 20103758. Research Blogging.
  32. 32.0 32.1 The NICE-SUGAR Study Investigators (March 2009). "Intensive versus conventional glucose control in critically ill patients". N. Engl. J. Med. 360 (13): 1283–97. DOI:10.1056/NEJMoa0810625. PMID 19318384. Research Blogging.
  33. 33.0 33.1 Arabi YM, Dabbagh OC, Tamim HM, et al (December 2008). "Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients". Crit. Care Med. 36 (12): 3190–7. DOI:10.1097/CCM.0b013e31818f21aa. PMID 18936702. Research Blogging.
  34. 34.0 34.1 Brunkhorst FM, Engel C, Bloos F, et al (2008). "Intensive insulin therapy and pentastarch resuscitation in severe sepsis". N. Engl. J. Med. 358 (2): 125–39. DOI:10.1056/NEJMoa070716. PMID 18184958. Research Blogging.
  35. 35.0 35.1 35.2 35.3 Van den Berghe G, Wilmer A, Hermans G, et al (2006). "Intensive insulin therapy in the medical ICU". N. Engl. J. Med. 354 (5): 449–61. DOI:10.1056/NEJMoa052521. PMID 16452557. Research Blogging.
  36. 36.0 36.1 36.2 van den Berghe G, Wouters P, Weekers F, et al (2001). "Intensive insulin therapy in the critically ill patients". N. Engl. J. Med. 345 (19): 1359–67. PMID 11794168[e]
  37. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J et al. (2004). "Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock.". Crit Care Med 32 (3): 858-73. PMID 15090974.
  38. Gandhi GY, Murad MH, Flynn DN, Erwin PJ, Cavalcante AB, Bay Nielsen H et al. (2008). "Effect of perioperative insulin infusion on surgical morbidity and mortality: systematic review and meta-analysis of randomized trials.7.". Mayo Clin Proc 83 (4): 418-30. PMID 18380987[e]
  39. Schetz M, Vanhorebeek I, Wouters PJ, Wilmer A, Van den Berghe G (2008). "Tight blood glucose control is renoprotective in critically ill patients". J. Am. Soc. Nephrol. 19 (3): 571-8. DOI:10.1681/ASN.2006101091. PMID 18235100. Research Blogging.
  40. Gandhi GY, Nuttall GA, Abel MD, et al (2007). "Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized trial". Ann. Intern. Med. 146 (4): 233–43. PMID 17310047[e]
  41. Napolitano LM, Kurek S, Luchette FA, Corwin HL, Barie PS, Tisherman SA et al. (2009). "Clinical practice guideline: red blood cell transfusion in adult trauma and critical care.". Crit Care Med 37 (12): 3124-57. DOI:10.1097/CCM.0b013e3181b39f1b. PMID 19773646. Research Blogging.
  42. Hébert PC, Wells G, Blajchman MA, et al (1999). "A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group". N. Engl. J. Med. 340 (6): 409–17. PMID 9971864[e]
  43. Corwin HL, Gettinger A, Fabian TC, et al (2007). "Efficacy and safety of epoetin alfa in critically ill patients". N. Engl. J. Med. 357 (10): 965–76. DOI:10.1056/NEJMoa071533. PMID 17804841. Research Blogging.
  44. Chan EY, Ruest A, Meade MO, Cook DJ (2007). "Oral decontamination for prevention of pneumonia in mechanically ventilated adults: systematic review and meta-analysis". BMJ 334 (7599): 889. DOI:10.1136/bmj.39136.528160.BE. PMID 17387118. Research Blogging.
  45. Silvestri L, van Saene HK, Milanese M, Gregori D, Gullo A (2007). "Selective decontamination of the digestive tract reduces bacterial bloodstream infection and mortality in critically ill patients. Systematic review of randomized, controlled trials". J. Hosp. Infect. 65 (3): 187–203. DOI:10.1016/j.jhin.2006.10.014. PMID 17244516. Research Blogging.
  46. Silvestri L, van Saene HK, Milanese M, Gregori D (2005). "Impact of selective decontamination of the digestive tract on fungal carriage and infection: systematic review of randomized controlled trials". Intensive Care Med 31 (7): 898–910. DOI:10.1007/s00134-005-2654-9. PMID 15895205. Research Blogging.
  47. de Jonge E, Schultz MJ, Spanjaard L, et al (2003). "Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial". Lancet 362 (9389): 1011–6. PMID 14522530[e]
  48. Cockerill FR, Muller SR, Anhalt JP, et al (1992). "Prevention of infection in critically ill patients by selective decontamination of the digestive tract". Ann. Intern. Med. 117 (7): 545–53. PMID 1524328[e]
  49. Stoutenbeek CP, van Saene HK, Little RA, Whitehead A (2007). "The effect of selective decontamination of the digestive tract on mortality in multiple trauma patients: a multicenter randomized controlled trial". Intensive Care Med 33 (2): 261–70. DOI:10.1007/s00134-006-0455-4. PMID 17146635. Research Blogging.
  50. Gastinne H, Wolff M, Delatour F, Faurisson F, Chevret S (1992). "A controlled trial in intensive care units of selective decontamination of the digestive tract with nonabsorbable antibiotics. The French Study Group on Selective Decontamination of the Digestive Tract". N. Engl. J. Med. 326 (9): 594–9. PMID 1734249[e]
  51. Treggiari MM, Romand JA, Yanez ND, Deem SA, Goldberg J, Hudson L et al. (2009). "Randomized trial of light versus deep sedation on mental health after critical illness.". Crit Care Med 37 (9): 2527-34. DOI:10.1097/CCM.0b013e3181a5689f. PMID 19602975. Research Blogging.
  52. Papadakis MA, Mangione CM, Lee KK, Kristof M (1991). "Treatable abdominal pathologic conditions and unsuspected malignant neoplasms at autopsy in veterans who received mechanical ventilation". JAMA 265 (7): 885–7. PMID 1992186[e]
  53. Zier LS, Burack JH, Micco G, et al (August 2008). "Doubt and belief in physicians' ability to prognosticate during critical illness: the perspective of surrogate decision makers". Crit. Care Med. 36 (8): 2341–7. DOI:10.1097/CCM.0b013e318180ddf9. PMID 18596630. Research Blogging.
  54. Le Gall JR, Lemeshow S, Saulnier F (1993). "A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study". JAMA 270 (24): 2957–63. PMID 8254858[e]
  55. 55.0 55.1 Oda S, Hirasawa H, Sugai T, Shiga H, Nakanishi K, Kitamura N et al. (2000). "Comparison of Sepsis-related Organ Failure Assessment (SOFA) score and CIS (cellular injury score) for scoring of severity for patients with multiple organ dysfunction syndrome (MODS).". Intensive Care Med 26 (12): 1786-93. PMID 11271086.
  56. Iyer VN, Mandrekar JN, Danielson RD, Zubkov AY, Elmer JL, Wijdicks EF (2009). "Validity of the FOUR score coma scale in the medical intensive care unit.". Mayo Clin Proc 84 (8): 694-701. DOI:10.4065/84.8.694. PMID 19648386. PMC PMC2719522. Research Blogging.
  57. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H et al. (1996). "The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine.". Intensive Care Med 22 (7): 707-10. PMID 8844239.