Van der Waals forces

From Citizendium
Revision as of 08:11, 13 September 2007 by imported>Paul Wormer
Jump to navigation Jump to search

In chemistry and physics, the name van der Waals force is sometimes used as a synonym for the totality of non-covalent forces (also known as intermolecular forces). These forces, which act between stable molecules, are weak compared to those appearing in chemical bonding. Historically, the use of the name for the total force is correct, because the Dutch physicist J. D. van der Waals, who lent his name to these forces, considered both the repulsive and the attractive component of the intermolecular force; see this article for the analytic form of van der Waals's original potential (and recall that a force is the gradient of a potential).

Unfortunately, there is no strict convention of the definition of Van der Waals forces. Some texts consider only the attractive component of the intermolecular potential as the Van der Waals force. Other texts designate only a certain part of the attraction as the Van der Waals force.

To explain this, we refer to the article on intermolecular forces, where it is discussed that an intermolecular force has four major contributions. In general an intermolecular potential has a repulsive part, prohibiting the collapse of molecular complexes, and an attractive part. The attractive part, in turn, consists of three distinct contributions

(i) The electrostatic interactions between charges (in the case of molecular ions), dipoles (in the case of molecules without inversion center), quadrupoles (all molecules with symmetry lower than cubic), and in general between permanent multipoles. The electrostatic interaction is sometimes called after Keesom.
(ii) The second source of attraction is induction (also known as polarization), which is the interaction between a permanent multipole on one molecule with an induced multipole on another. This interaction is sometimes called after Debye.
(iii) The third attraction is usually named after London who himself called it dispersion. This is the only attraction experienced by noble gas atoms, but it is operative between any pair of molecules, irrespective of their symmetry.

Returning to nomenclature: some texts mean by the Van der Waals force the totality of forces (including repulsion), others mean all the attractive forces (and then sometimes distinguish Van der Waals-Keesom, Van der Waals-Debye, and Van der Waals-London), and, finally some use the term "Van der Waals force" solely as a synonym for the London/dispersion force. So, if you come across the term "Van der Waals force", it is important to ascertain to which school of thought the author belongs.

All intermolecular/Van der Waals forces are anisotropic (except those between two noble gas atoms), which means that they depend on the relative orientation of the molecules. The induction and dispersion interactions are always attractive, irrespective of orientation, but the electrostatic interaction changes sign upon rotation of the molecules. That is, the electrostatic force can be attractive or repulsive, depending on the mutual orientation of the molecules. When molecules are in thermal motion, as they are in the gas and liquid phase, the electrostatic force is averaged out to a large extent, because the molecules thermally rotate and thus probe both repulsive and attractive parts of the electrostatic force. Sometimes this effect is expressed by the statement that "random thermal motion around room temperature can usually overcome or disrupt them" (which refers to the electrostatic component of the Van der Waals force). Clearly, the thermal averaging effect is much less pronounced for the attractive induction and dispersion forces.

The Lennard-Jones potential is often used as an approximate model for the isotropic part of a total (repulsion plus attraction) van der Waals force as a function of distance.

Van der Waals forces are responsible for certain cases of pressure broadening (van der Waals broadening) of spectral lines and the formation of van der Waals molecules.

External link

See this URL for an introductory description of the Van der Waals force (as a sum of attractive components only).