Hund's rules

From Citizendium
Revision as of 03:58, 11 January 2008 by imported>Paul Wormer
Jump to navigation Jump to search

In atomic spectroscopy, Hund's rules predict which atomic energy level with quantum numbers L, S and J is lowest. The rules are called after Friedrich Hund who formulated them in 1925.[1] A group of atomic energy levels, obtained by Russell-Saunders coupling, is concisely indicated by a term symbol. A term (also known as multiplet) is a set of simultaneous eigenfunctions of L2 (total orbital angular momentum squared) and S2 (total spin angular momentum squared) with given quantum numbers L and S, respectively. If there is no spin-orbit coupling, the functions of one term are degenerate (have the same energy).

Hund's rules are:

  1. Of the Russell-Saunders states arising from a given electronic configuration those with the largest spin quantum number S lie lowest, those with the next largest next, and so on; in other words, the states with largest spin multiplicity are the most stable.
  2. Of the group of terms with a given value of S, that with the largest value of L lies lowest.
  3. Of the states with given values of S and L in an electronic configuration consisting of less than half the electrons in a closed subshell, the state with the smallest value of J is usually the most stable, and for a configuration consisting of more than half the electrons in a closed subshell the state with largest J is the most stable.

The levels of the second sort, largest J most stable, can be seen as arising from holes in the closed subshell.

Examples:

  • The ground state carbon atom, (1s)2(2s)2(2p)2, gives by Russell-Saunders coupling a set of energy levels labeled by term symbols. Hund's rules predict the following order of the energies
  • The ground state oxygen atom, (1s)2(2s)2(2p)4, (a two-hole state) gives by Russell-Saunders coupling a set of energy levels labeled by term symbols. Hund's rules predict the following order of the energies

References

  1. F. Hund, Zur Deutung verwickelter Spektren, insbesondere der Elemente Scandium bis Nickel. [On the interpretation of complicated spectra, in particular the elements scandium through nickel]. Zeitschrift für Physik, vol. 33, pp. 345-371 (1925).
  • L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, 3rd edition (1960)