Removable singularity

From Citizendium
Revision as of 06:01, 11 October 2024 by Suggestion Bot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In complex analysis, a removable singularity is a type of singularity of a function of a complex variable which may be removed by redefining the function value at that point.

A function f has a removable singularity at a point a if there is a neighbourhood of a in which f is holomorphic except at a and the limit exists. In this case, defining the value of f at a to be equal to this limit (which makes f continuous at a) gives a function holomorphic in the whole neighbourhood.

An isolated singularity may be either removable, a pole, or an essential singularity.

References

  • Tom M. Apostol (1974). Mathematical Analysis, 2nd ed. Addison-Wesley, 458.