Discrete space

From Citizendium
Revision as of 14:57, 4 January 2013 by imported>Richard Pinch (Every map from a discrete space to a topological space is continuous)
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In topology, a discrete space is a topological space with the discrete topology, in which every subset is open.

Properties

  • A discrete space is metrizable, with the topology induced by the discrete metric.
  • A discrete space is a uniform space with the discrete uniformity.
  • A discrete space is compact if and only if it is finite.
  • A discrete space is connected if and only if it has at most one point.
  • Every map from a discrete space to a topological space is continuous.

References