Derivation (mathematics)

From Citizendium
Revision as of 16:30, 21 December 2008 by imported>Richard Pinch (added section and anchors on Kähler differentials)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a derivation is a map which has formal algebraic properties generalising those of the derivative.

Let R be a ring (mathematics) and A an R-algebra (A is a ring containing a copy of R in the centre). A derivation is an R-linear map D from A to some A-module M with the property that

The constants of D are the elements mapped to zero. The constants include the copy of R inside A.

A derivation "on" A is a derivation from A to A.

Linear combinations of derivations are again derivations, so the derivations from A to M form an R-module, denoted DerR(A,M).

Examples

Universal derivation

There is a universal derivation (Ω,d) with a universal property. Given a derivation D:AM, there is a unique A-linear f:Ω → M such that D = d.f. Hence

as a functorial isomorphism.

Consider the multiplication map μ on the tensor product (over R)

defined by . Let J be the kernel of μ. We define the module of differentials

as an ideal in , where the A-module structure is given by A acting on the first factor, that is, as . We define the map d from A to Ω by

.

This is the universal derivation.

Kähler differentials

A Kähler differential, or formal differential form, is an element of the universal derivation space Ω, hence of the form . An exact differential is of the form for some y in A. The exact differentials form a submodule of Ω.

References