John Dalton

From Citizendium
Revision as of 23:38, 6 September 2008 by imported>Anthony.Sebastian (add section)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Gallery [?]
 
This editable Main Article is under development and subject to a disclaimer.
(PD) Image: {{{1}}}

John Dalton (1766-1844) was an English scientist.[1] [2] He taught mathematics and physical sciences at New College, Manchester. Dalton revived the atomic theory of matter, which he applied to a table of atomic weights and used in developing his law of partial pressures (Dalton's law). He was color-blind and studied that affliction, also known as Daltonism.

Another important achievement of Dalton's was his law of multiple proportions: If two elements form more than one compound, the weights in different compounds of an element are ratios of integral numbers. For instance, consider the elements nitrogen and oxygen. The element oxygen occurs in the compounds NO and NO2. The ratio of oxygen weights (1:2) in these compounds contains the integral numbers 1 and 2. (Note that in modern chemistry the concept "weight", used by Dalton, is replaced by "number of atoms". Now we say that the ratio of numbers of O-atoms in different NOx compounds is a rational number. Or, by extension of Dalton's law of multiple proportions, the subscripts m, n, k, ... in a compound AmBnCk⋅⋅⋅ are integral numbers.) This law led Dalton to take the mass of the lightest element, hydrogen, as unit of atomic mass.

Informative tribute

In the Introduction to John Dalton and the Rise of Modern Chemistry[3] Sir Henry Roscoe assesses Dalton's contribution to chemistry:

In the vestibule of the Manchester Town Hall are placed two life-sized marble statues facing each other. One of these is that of John Dalton, by Chantrey; the other that of James Prescott Joule, by Gilbert. Thus honour is done to Manchester's two gl'eatest sons - to Dalton, the founder of modern Chemistry and of the Atomic Theory, and the discoverer of the laws of chemical-combining proportions; to Joule, the founder of modern Physics and the discoverer of the law of the Conservation of Energy. The one gave to the world the final and satisfactory proof of the great principle, long surmised and often dwelt upon, that in every kind of ohemical change no loss of matter occurs; the other proved that in all the varied modes of physical ohange no loss of energy takes place. Dalton, by determining the relative weights of the atoms which take part in chemical change, proved that every such change - whether from visible to invisible, from solid to liquid, or from liquid to "gas - can be represented quantitatively by a chemical equation; and he created the Atomic Theory of Chemistry by which these changes are explained. Joule, by exact experiment, proved the truth of the same statement for the different forms of energy. 


Early life

References and notes cited in text

Many citations to articles listed here include links to full-text — in font-color blue. Accessing full-text may require personal or institutional subscription to the source. Nevertheless, many do offer free full-text, and if not, usually offer text or links that show the abstracts of the articles. Links to books variously may open to full-text, or to the publishers' description of the book with or without downloadable selected chapters, reviews, and table of contents. Books with links to Google Books often offer extensive previews of the books' text.


  1. John Dalton. Free full-text article from Encyclopedia Britannica.
  2. Millington JP. (1906) John Dalton. E.P. Dutton & Co.: New York. Free full-text of book by former scholar of Christ's College, Cambridge.
  3. Roscoe HE. (1895) John Dalton and the Rise of Modern Chemistry. New York: Macmillan & Co.