Ackermann function

From Citizendium
Revision as of 05:21, 11 July 2009 by imported>Dmitrii Kouznetsov (Make sections. Add Holomorphic extension and references. The wikipedia artilce still looks much better.)
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In computability theory, the Ackermann function or Ackermann-Péter function is a simple example of a computable function that is not primitive recursive. The set of primitive recursive functions is a subset of the set of general recursive functions. Ackermann's function is an example that shows that the former is a strict subset of the latter. [1].

Definiton

The Ackermann function is defined recursively for non-negative integers m and n as follows::

Rapid growth

Its value grows rapidly; even for small inputs, for example A(4,2) contains 19,729 decimal digits [2].

Holomorphic extensions

The lowest Ackermann functions allow the extension to the complex values of the second argument. In particular,

The 3th Ackermann function is related to the exponential on base 2 through

The 4th Ackermann function is related to tetration on base 2 through

which allows its holomorphic extension for the complex values of the second argument. [3]

For no holomorphic extension of to complex values of is yet reported.

References

  1. Wilhelm Ackermann (1928). "Zum Hilbertschen Aufbau der reellen Zahlen". Mathematische Annalen 99: 118–133. DOI:10.1007/BF01459088. Research Blogging.
  2. Decimal expansion of A(4,2)
  3. D. Kouznetsov. Ackermann functions of complex argument. Preprint ILS, 2008, http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann.pdf