Ackermann function

From Citizendium
Revision as of 06:18, 8 November 2008 by imported>Dmitrii Kouznetsov (copypast the preamble from wikipedia.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In computability theory, the Ackermann function or Ackermann-Péter function is a simple example of a computable function that is not primitive recursive. The set of primitive recursive functions is a subset of the set of general recursive functions. Ackermann's function is an example that shows that the former is a strict subset of the latter.

The Ackermann function is defined recursively for non-negative integers m and n as follows::

Its value grows rapidly; even for small inputs, for example A(4,2) contains 19,729 decimal digits [1].