Talk:Ring (mathematics)
Workgroup category or categories | Mathematics Workgroup [Categories OK] |
Article status | Developing article: beyond a stub, but incomplete |
Underlinked article? | Yes |
Basic cleanup done? | Yes |
Checklist last edited by | --AlekStos 12:57, 17 April 2007 (CDT) |
To learn how to fill out this checklist, please see CZ:The Article Checklist.
Notes
Started editing the article. I'm afraid it doesn't easily lead itself to being turned into prose.
Some points:
- I removed the existence of an identity element from the axioms.
- I cut down on the number of examples, rather focusing on the basic examples. If you are looking for examples of rings, I guess knowing that the set polynomials are rings is good enough, and knowing that the set of polynomials with coefficients in a ring i a ring only creates confusion. Same fact with matrices and functions.
- Should we say more about ideals?
- Removed "Basic theorems"
- Cut down on "Construction of new rings"
- History of the subject should be included. (Problem with regards to ring theory page)
Apart from that, I don't know what else should be here, except possibly some things from ring theory, if that is merged in. Maintaining a separate page on ideals could also be discussed. Simen Rustad 13:49, 2 November 2006 (CST)
Added some basic history, and merged with Ring theory. The history section should be fleshed out, however, by someone with more knowledge than me. Simen Rustad 13:47, 9 November 2006 (CST)
examples
I put in some examples, but took them out again when I noticed that there was already a section with examples further along in the article. However, I think it would probably be a good idea to have examples sprinkled into the text here and there as I did, or at least introduced earlier in the article. It's easier to imagine what's being talked about if one has at least one example in mind.
"Conversely, if I is an ideal of A, then there is a natural ring homomorphism from A to A/I such that I is the set of all elements mapped to 0 in A/I." I wonder whether this would make more sense if it ended instead with "...is the set of all elements mapped to 0 by that homomorphism".
"Given the multiplication · in R the multiplication ∗ in Rop is defined as b∗a := a·b. " I would reverse the order of the variables, i.e. I would define it as "a∗b := b·a. "" It seems more natural that way, with the simpler form on the left.
I suggest the following version of this bit; perhaps someone can verify that I have the math right:
- "* The direct sum of a collection of rings is the subring of the direct product consisting of all n-tuples (or infinite-tuples) with the property that rj=0 for all but finitely many j. In particular, if J is finite, then the direct sum and the direct product are identical, but in general they have quite different properties."
Here I've changed "infinite-tuples" to "n-tuples (or infinite-tuples)" because the finite case needs to be covered as well as the infinite case. I added the condition "" to the subscript. I changed "isomorphic" to "identical".
I can't follow the following and I suspect it may be too advanced for this article (or else it requires some definitions and clarification):
- Since any ring is both a left and right module over itself, it is possible to construct the tensor product of R over a ring S with another ring T to get another ring provided S is a central subring of R and T.
Here it would be helpful to have definitions of "module" and "tensor product" available. I notice that with "tensor product" there seem to be three arguments indicated by the prepositions "of", "over" and "with". This seems confusing -- unless maybe the definition of tensor product uses the same three prepositions. If this is kept in the article I think it would be good to slow it down by going through an example, as well as explaining it more fully. --Catherine Woodgold 13:11, 28 April 2007 (CDT)
- Mathematics Category Check
- General Category Check
- Category Check
- Advanced Articles
- Nonstub Articles
- Internal Articles
- Mathematics Advanced Articles
- Mathematics Nonstub Articles
- Mathematics Internal Articles
- Developed Articles
- Mathematics Developed Articles
- Developing Articles
- Mathematics Developing Articles
- Stub Articles
- Mathematics Stub Articles
- External Articles
- Mathematics External Articles
- Mathematics Underlinked Articles
- Underlinked Articles
- Mathematics Cleanup
- General Cleanup
- Cleanup