Vesalius
Andreas Vesalius (1514-1564), [1] [2] [3] [4] a Belgian (Flemish) Renaissance physician/surgeon, anatomist and physiologist, revolutionized the study of human anatomy and, as a consequence, the practice of medicine. He accomplished that feat (a) in virtue of the results of his dissections of human cadavers never previously performed with the quality of Vesalius's extraordinary meticulous systematic detail and eloquent extensive documentation; (b) in virtue of the fluent writing [in Latin] of lucid descriptions of his anatomical and physiological findings precisely integrated with the accompanying illustrations; and, (c) in virtue of having his anatomical findings exquisitely illustrated by his artist collaborators, notably Jan Stephan van Calcar, a protégé of the great Italian artist, Titian.[5][Note 3] [6][Note 4]
In 1543, at the age of 29 years, Vesalius published De Humani Corporis Fabrica (On the Workings of the Human Body.) — generally referred to as the Fabrica — a work of many years of observations and illustrations of human dissections that not only laid the foundation for a realistic human anatomy but also demonstrated numerous errors in the anatomical assertions of the self-proclaimed heir of Hippocrates (460-360 BCE), Galen (129-216 CE) of Pergamum, the Greek physician/surgeon who based his description of human anatomy on extrapolations of dissections of animals and observations of the wounds of gladiators in Rome and Pergamum. Vesalius's contemporaries, having unquestionably accepted Galen's conclusions about human anatomy, found themselves in turmoil, stunned and even outraged at what eventuated as one of the most important contributions to the evolution of biology and medicine. In his book on the evolution of medicine, Sir William Osler considered it "....one of the great books of the world", asserting as follows:[7]
The worth of a book, as of a man, must be judged by results, and, so judged, the "Fabrica" is one of the great books of the world, and would come in any century of volumes which embraced the richest harvest of the human mind. In medicine, it represents the full flower of the Renaissance. As a book it is a sumptuous tome—a worthy setting of his jewel—paper, type and illustration to match...the chef d'œuvre of any medical library. [7] |
Medicine's intertwining with science began when physicians finally realized that universalizing, all-explaining theories about human biology served only to foster the misinterpretation of observed phenomena. Until then, a conflict between what was actually experienced and what the grand conceptual scheme told a physician he should be experiencing was always resolved in favor of the latter.
|
The year that saw publication of the Fabrica, 1543, also saw publication of Nicholas Copernicus's (1473-1543) De revolutionibus orbium coelestium libri vi (Six Books Concerning the Revolutions of the Heavenly Orbs) — the two books published a week apart. A memorable year, and a memorable pair of scholars who jump-started two revolutions, one on interpretations of the structure and function of the human body, the other on interpretations of the structure and movements of the earth and the sun. Those revolutions challenged ancient wisdom that had dominated thinking in medicine and astronomy.[9] These new ideas met with strong opposition from the church of the time,[10] although they represent an anno mirabile in the history of science.
The U.S. National Library of Medicine offers an online reproduction of the Fabrica, prepared in such a way that the reader can turn the pages, pause on any page to zoom on any section, read explanatory commentaries, and print pages.[11]
Chronology of Vesalius's life
Vesalius entered the world in Brussels, Belgium, late on the last day of 1514 or early on the first day of 1515, the newest member of a wealthy family of many generations of physicians. His father served as apothecary — preparer and dispenser of medications — in the royal court (Holy Roman Emperor Charles V (1500-1558)). Father's duties apparently forced leaving the upbringing of Vesalius and his two brothers and a sister to the mother. Vesalius had access to his family's library of books. As a child Vesalius often visited a nearby site (Gallows Hill) where the authorities left criminals hanging until they rotted. Vesalius thus could begin to teach himself aspects of human anatomy at an early age. He continued to satisfy his curiosity of anatomy with the dissection of small animals, concentrating on both structure and function at a macroscopic level — the microscope not invented until after Vesalius's death.
At age 15, Vesalius began studying at the University of Louvain, where he learned, between 1530 and 1533, the subjects of rhetoric, logic, philosophy, and Latin. The University of Louvain stressed the Latin of the ancient Romans and attempted to inculcate a high degree of literary skill in reading and writing.[12]
After Louvain, Vesalius moved to study at the most prestigious center of medical science at the time, the University of Paris, attending from 1533 to 1536. As little information has emerged of Vesalius's activities during those three years, his biographer, C. D. O'Malley,[1] offers an educated argument from information on the workings of medical education at that time there. Near concluding, he writes:
It would be incorrect to liken the Vesalius of Paris to the later author of the Fabrica, and it is important to remember that although Vesalius in Paris may have been extraordinarily inquisitive, and he had acquired unusual skill in the technique of dissection, his vision was still considerably clouded by Galenism if, indeed, he was not a completely devoted Galenist. [1] |
Subsequently Vesalius moved to Italy, to the central hub of Renaissance culture and learning, Padua, where at the University there he quickly earned his medical degree (1537) and soon after a professorship in anatomy.
Timeline
This image show the timeline of Vesalius's life in relation to that of William Harvey, who advanced physiology as Vesalius did anatomy, and Marcello Malpighi, who completed the circuit of Harvey's circulation of the blood by his discovery of the capillaries.
Vesalius's work
In his lectures on the history of medicine, physician/surgeon and Yale Professor Sherwin B. Nuland summarizes Vesalius and his work in the following verbatim outline:[13]
- “A. Fabrica has been interpreted to mean not just "structure" but "workings." Vesalius was as interested in the functions of the human body as he was in the anatomy itself.
- B. Published in 1543, Fabrica gave the world its first accurate knowledge of anatomy and a method by which it could be studied.
- C. Vesalius provided directions by which anyone with appropriate instruments and access to cadavers could perform dissections.
- D. Vesalius's book began the process of debunking Galen,[Note 5][Note 6] though this would take centuries.[Note 7]
- E. Although Vesalius's text brought about the change, the work of its artist, Jan van Calcar, a protege of Titian, is what is most commented on today.
- F. The story of this book and of Vesalius himself is also the story of a series of events representative of the Renaissance, including:
- 1. A return to interest in the human body
- 2. A return to Greek learning
- 1. A return to interest in the human body
- G. The rise of the universities, which were the focus of Renaissance thought.”
Point E seems a bit exaggerated, apparently omitting some sources of commentary, such as historians.
References cited in text
Most citations to articles listed here include links — in font-color blue — to full-text. Accessing full-text may require personal or institutional subscription. Nevertheless, many do offer full-text, and if not, usually offer text or links that show the abstracts of the articles, free without subscription. Links to books variously may open to full-text, or to the publishers' description of the book with or without downloadable selected chapters, reviews, and table of contents. Books with links to Google Books often offer extensive previews of the books' text. |
- ↑ 1.0 1.1 1.2 1.3 O'Malley CD (1964). Andreas Vesalius of Brussels, 1514-1564. Berkeley: University of California Press.
- ↑ 2.0 2.1 Ball JM. (1910) Andreas Vesalius: The Reformer of Anatomy. (Free Full-Text) St. Louis: Medical Science Press. (149 pages)
- ↑ Miranda EA. Andreas Vesalius: A Biography, Original written by: Richard S. Westfall (1924-1996), Department of History and Philosophy of Science, Indiana University. Published here as a courtesy of Clinical Anatomy Associates, Inc. The original document can be found at the Galileo Project of the Rice University. Comment: A detailed resume of Vesalius Life and Work in outline form.
- ↑ Lind LR (translator, preface, introduction), Asling CW (anatomical notes), Clendening L (forward). (1949) The Epitome of Andreas Vesalius. New York: Macmillan. ISBN 1169943845. Comment: This book epitomizes Vesalius’s longer signal book, De Humani Corporis Fabrica (The Fabric of the Human Body). The translator’s Introduction offers a brief biography of Vesalius on pp. xvii-xix in the Questia text.
- ↑ Hazard J. (1996). "Jan Stephan Van Calcar, a valuable and unrecognized collaborator of Vesalius". Hist Sci Med. 30 (4): pp. 471-80. [Article in French] PMID: 11625048
- ↑ Zimbler MS. (2001) Vesalius' Fabrica: The Marriage of Art and Anatomy. Arch Facial Plast Surg 3:220-221. PMID: 11625048
- ↑ 7.0 7.1 Osler W. (1921). The Evolution of Modern Medicine: A Series of Lectures Delivered at Yale university at the Silliman Foundation, in April, 1913. New Haven: Yale University Press.
- ↑ Nuland SB (2001). The Great Books. American Scholar. 70:125+
- ↑ Magner LN (2002). “Andreas Vesalius on the fabric of the human body”, A History of the Life Sciences, Third Edition, Revised and Expanded, pp. 83 ff. ISBN 0824708245.
- ↑ Andrew Dickson White (1896). A history of the warfare of science with theology in Christendom, Volume 2. Macmillan & Co., pp. 51ff.
- ↑ Andreas Vesalius's De Humani Corporis Fabrica (The Fabric of the Human Body). National Library of Medicine. A 'turn the pages' online reproduction of the book.
- ↑ Nutton V.. De humani corporis fabrica, (On the fabric of the human body.): Introduction. Comment: Nutton's 'Introduction' gives an extensive and erudite biography of Vesalius
- ↑ Nuland SB (2005). Lecture three: Vesalius and the renaissance of medicine. Doctors: The history of medicine revealed through biography (12 lectures, 30 minutes/lecture), Course No. 8128. The Teaching Company.
Notes
|
- ↑ O'Malley's 1964 biography of Vesalius [see ref: O'Malley CD. (1964)] is considered the definitive biography. Renowned historian of medicine, F. N. L. Poynter, stated of Dr. O'Malley's book: "What strikes me immediately on reading Professor O'Malley's monumental work is the coolness of its judgment, the absence of any kind of special pleading or even of that warmth of expression which comes from the biographer's identification with his subject. This almost Olympian detachment is rare indeed and not to be found in any of the outstanding examples of the biographer's art which readily spring to mind." (See F. N. L. POYNTER. 1964. Andreas Vesalius of Brussels — 1514-1564: A Brief Survey of Recent Work. Journal of the History of Medicine and Allied Sciences 1964 XIX(4):321-326. PMID 14215447
- ↑ A vignette about Vesalius from Ball [see ref: Ball JM. (1910)]: "Vesalius began his career as an author by issuing a paraphrase, or free translation, of the ninth book of the Almansor of the celebrated Rhazes [footnote]. This book, liber ad Almansorem, or work dedicated to the Caliph Al-Mansur, was written by a learned Arab physician who lived between the years 860-932. The Almansor consists of ten books and was designed by the author for a complete body or compendium of Physic....The ninth book, which Vesalius translated from the barbarous version into a readable form, was so highly prized in mediaeval times that it was read publicly in the schools and was commentated by learned professors for more than a hundred years. By this publication Vesalius furnished a valuable contribution to medical literature. The numerous marginal and interlinear notes, which he supplied, show his intimate acquaintance with classical literature as well as with materia med-ica. Vesalius emphasizes the fact that the book of Rhazes contains many remedies which were unknown to the Greeks. The value of his edition was increased by the presence of original drawings of the plants mentioned in the text."
- ↑ English Abstract of Hazard's work [see ref: Hazard J. (1996)]: Numerous and legitimate homages have been paid to Andreas Vesalius, eminent personality of the medical Renaissance. At that time scientific anatomy was inseparable from artistic one. As soon as 1535, Vesalius then 21 years old taught in Padova and at the University of Venice, a town harbouring many artists. It has been suggested that he had obtained the collaboration of Titian himself, but this hypothesis has not been confirmed. In fact "Lives of the best painters, sculptors and architects" G. Vasari expresses his admiration for the prints drawn by Calcar: "the illustrations conceived by Vesalius for his Fabrica and drawn by the outstanding flemish painter Jan Stephan Calcar are of an excellent style". For Carel van Mander nicknamed the "Vasari of the ancient Netherlands", it is to Calcar we owe Vesalius' anatomical plates. The reasons which have led this Flemish born around 1510 in Kalkar, a small town of the Cleves dukedom, to settle in Venice are both general and personal. Pupil of Titian, Calcar was an excellent portrait-painter who assimilated so well his master's style that he was adopted by the Italians calling him Giovanni Calcar. This valuable collaborator of Vesalius and brilliant pupil of Titian went to Naples for unknown reasons and stayed there until his premature death around 1546.
- ↑ Excerpt from Zimbler [see ref: Zimbler MS. (2001)]: The Renaissance also brought about the emergence of a new focus in the realm of art. Aesthetic theory now dictated that a work of art should be a faithful representation of nature. This assumption required artists to acquaint themselves with the structure and physical properties of natural phenomena. Art had gone scientific! By the 15th and 16th centuries, artists such as Leonardo da Vinci, Michelangelo, and Raphael turned with enthusiasm to the detailed study of the human body.
- ↑ This point is supported by Fulton JF (1950). “I: Vesalius Four Centuries Later; II: Medicine in the Eighteenth Century”, PDF Vesalius Four Centuries Later, Logan Clendening Lectures on the History and Philosophy of Medicine First Series. University of Kansas Press. .
- ↑ Vesalius on Galen quoted by Fulton [see ref: Fulton JF. (1950)]: Historian John F. Fulton quotes Vesalius as exclaiming:
I acknowledge no authority save the witness of mine own eyes—I must have the liberty to compare the dicta of Galen with the observed facts of bodily structure.
- ↑ Nuland writes (See Nuland SB (2005)):
By exposing Galen's errors and adding many new findings, this book clarified the understanding of anatomy and function in ways never previously imagined and began to loosen the ancient icon's stifling hold on medical thought.