Resultant (algebra): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(New entry, just a stub)
 
imported>Richard Pinch
(supplied References Cassels)
Line 28: Line 28:


The determinant of the Sylvester matrix is the resultant of ''f'' and ''g''.
The determinant of the Sylvester matrix is the resultant of ''f'' and ''g''.
==References==
* {{cite book | author=J.W.S. Cassels | authorlink=J. W. S. Cassels | title=Lectures on Elliptic Curves | series=LMS Student Texts | volume=24 | publisher=[[Cambridge University Press]] | year=1991 | isbn=0-521-42530-1 }} Chapter 16.

Revision as of 16:25, 17 December 2008

In algebra, the resultant of two polynomials is a quantity which determines whether or not they have a factor in common.

Given polynomials

and

with roots

respectively, the resultant R(f,g) with respect to the variable x is defined as

The resultant is thus zero if and only if f and g have a common root.

Sylvester matrix

The Sylvester matrix attached to f and g is the square (m+n)×(m+n) matrix

in which the coefficients of f occupy m rows and those of g occupy n rows.

The determinant of the Sylvester matrix is the resultant of f and g.

References