Vitamin D: Difference between revisions
imported>Stefan Olejniczak No edit summary |
imported>Stefan Olejniczak m (→Cancer prevention: why more than 1 link to the same article in 1 section) |
||
Line 36: | Line 36: | ||
A secondary analysis of a [[randomized controlled trial]] originally designed to study fractures suggests that cholecalciferol (vitamin D<sub>3</sub>) combined with calcium may reduce risk of [[cancer]].<ref name=lappe2007>Lappe,J.M.; Travers-Gustafson,D.; Davies,K.M.; Recker,R.R.; Heaney,R.P. (2007) Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. ''Am J. Clin Nutr.'' 85(6):1586-1591. [http://www.ajcn.org/cgi/content/full/85/6/1586 Full Text].</ref> They reported that 1100 IU of vitamin D (cholecalciferol) combined with 1500 mg of calcium per day administered for four years greatly reduced the risk for new cancers compared with placebo controls (p < 0.005). They also noted that the concentrations of serum 25-hydroxy-vitamin D (25[OH]D) levels, both pre-treatment and during treatment independently predicted cancer risk. The treatment group achieved mean concentrations of serum 25-hydroxy-vitamin D (25[OH]D) of 96 nmol/L (38 ng/ml). Natural levels for people who live and work in the sun: ~50-70 ng/ml (~125-175 nmol/L). <ref name=vieth2006>Vieth R. (2006) What is the optimal vitamin D status for health? ''Prog. Biophys. Mol. Biol.'' 92(1):26-32. [http://dx.doi.org/10.1016/j.pbiomolbio.2006.02.003 Full Text]</ref> | A secondary analysis of a [[randomized controlled trial]] originally designed to study fractures suggests that cholecalciferol (vitamin D<sub>3</sub>) combined with calcium may reduce risk of [[cancer]].<ref name=lappe2007>Lappe,J.M.; Travers-Gustafson,D.; Davies,K.M.; Recker,R.R.; Heaney,R.P. (2007) Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. ''Am J. Clin Nutr.'' 85(6):1586-1591. [http://www.ajcn.org/cgi/content/full/85/6/1586 Full Text].</ref> They reported that 1100 IU of vitamin D (cholecalciferol) combined with 1500 mg of calcium per day administered for four years greatly reduced the risk for new cancers compared with placebo controls (p < 0.005). They also noted that the concentrations of serum 25-hydroxy-vitamin D (25[OH]D) levels, both pre-treatment and during treatment independently predicted cancer risk. The treatment group achieved mean concentrations of serum 25-hydroxy-vitamin D (25[OH]D) of 96 nmol/L (38 ng/ml). Natural levels for people who live and work in the sun: ~50-70 ng/ml (~125-175 nmol/L). <ref name=vieth2006>Vieth R. (2006) What is the optimal vitamin D status for health? ''Prog. Biophys. Mol. Biol.'' 92(1):26-32. [http://dx.doi.org/10.1016/j.pbiomolbio.2006.02.003 Full Text]</ref> | ||
A | A randomized controlled trial found no benefit on [[colorectal cancer]] prevention.<ref name="pmid16481636">{{cite journal| author=Wactawski-Wende J, Kotchen JM, Anderson GL, Assaf AR, Brunner RL, O'Sullivan MJ et al.| title=Calcium plus vitamin D supplementation and the risk of colorectal cancer. | journal=N Engl J Med | year= 2006 | volume= 354 | issue= 7 | pages= 684-96 | pmid=16481636 | doi=10.1056/NEJMoa055222 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16481636 }} [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17076014 Review in: Evid Based Nurs. 2006 Oct;9(4):114] [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16813354 Review in: ACP J Club. 2006 Jul-Aug;145(1):4-5] </ref> | ||
An observational analysis of a | An observational analysis of a randomized controlled trial found no benefit for [[prostate cancer]].<ref name="pmid20693267">{{cite journal| author=Kristal AR, Arnold KB, Neuhouser ML, Goodman P, Platz EA, Albanes D et al.| title=Diet, supplement use, and prostate cancer risk: results from the prostate cancer prevention trial. | journal=Am J Epidemiol | year= 2010 | volume= 172 | issue= 5 | pages= 566-77 | pmid=20693267 | doi=10.1093/aje/kwq148 | pmc=PMC2950820 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20693267 }} </ref> | ||
===Cardiovascular disease=== | ===Cardiovascular disease=== |
Revision as of 13:09, 13 August 2011
Vitamin D is a steroid and a vitamin that "includes both cholecalciferols and ergocalciferols, which have the common effect of preventing or curing rickets in animals. It can also be viewed as a hormone since it can be formed in skin by action of ultraviolet rays upon the precursors, 7-dehydrocholesterol and ergosterol, and acts on vitamin D receptors to regulate calcium in opposition to parathyroid hormone."[1]
Vitamin D serves two classes of functions: (a) an endocrine function, in which a form of vitamin D, calcitriol, produced in the kidneys and secreted into the bloodstream, acts on target organs (gastrointestinal tract, bone, parathyroid glands) in such a way as to regulate aspects of calcium and phosphorus metabolism important to bone health and homeostasis of circulating calcium and phosphorus concentrations; and, (b) an autocrine function, in which the cells of numerous organs and tissues in the body (e.g., parts of the immune system, various epithelial tissues) generate calcitriol that functions in the cells that generate it, in intracellular signaling pathways (e.g., facilitation of the expression of specific genes) important to optimal functioning of those cells.[2] The autocrine mechanisms account for the preponderance of vitamin D utilized by body each day, and therefore tends to set the daily requirement for vitamin D.[2]
Biochemistry
Ergocalciferols (vitamin D2) is formed in plants. Ergocalciferols are "derivatives of ergosterol formed by ultraviolet rays breaking of the C9-C10 bond. They differ from cholecalciferol in having a double bond between C22 and C23 and a methyl group at C24."[3]
Cholecalciferol (vitamin D3) is formed in the skin of animals from 7-dehydrocholesterol by sunlight. Cholecalciferol is a "derivative of 7-dehydroxycholesterol formed by ultraviolet rays breaking of the C9-C10 bond. It differs from ergocalciferol in having a single bond between C22 and C23 and lacking a methyl group at C24."[4]
Vitamin D2 and vitamin D3 are of equal potency.[5]
Vitamin D2 and vitamin D3 are hydroxylated in the liver at the 25 position.[5] This leads to calcitriol (1,25-Dihydroxyvitamin D3). Calcitriol is the "physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (calcifediol). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption."[6]
Deficiency
Administration
The best treatment may be calciferol (ergocalciferol or colecalciferol).[7] For every 100 IU of vitamin D taken, the serum level rises about 1 ng/ml.[8]
In a prior study of healthy adults, Vitamin D2 and vitamin D3 are equally effective in maintaining serum 25-hydroxyvitamin D levels.[9]
Clinical uses
Clinical practice guidelines by the Endocrine Society are available.[10]
Mortality
"Vitamin D in the form of vitamin D(3) seems to decrease mortality in predominantly elderly women who are mainly in institutions and dependent care" according to the Cochrane Collaboration. [11]
Accidental falls
The American Geriatrics Society recommends regarding vitamin D for prevention of accidental falls in geriatrics:[12]
- "Vitamin D supplements of at least 800 IU per day should be provided to older persons with proven vitamin D deficiency."
- "Vitamin D supplements of at least 800 IU per day should be considered for people with suspected vitamin D deficiency or who are otherwise at increased risk for falls."
Cancer prevention
A secondary analysis of a randomized controlled trial originally designed to study fractures suggests that cholecalciferol (vitamin D3) combined with calcium may reduce risk of cancer.[13] They reported that 1100 IU of vitamin D (cholecalciferol) combined with 1500 mg of calcium per day administered for four years greatly reduced the risk for new cancers compared with placebo controls (p < 0.005). They also noted that the concentrations of serum 25-hydroxy-vitamin D (25[OH]D) levels, both pre-treatment and during treatment independently predicted cancer risk. The treatment group achieved mean concentrations of serum 25-hydroxy-vitamin D (25[OH]D) of 96 nmol/L (38 ng/ml). Natural levels for people who live and work in the sun: ~50-70 ng/ml (~125-175 nmol/L). [14]
A randomized controlled trial found no benefit on colorectal cancer prevention.[15]
An observational analysis of a randomized controlled trial found no benefit for prostate cancer.[16]
Cardiovascular disease
Vitamin D supplementation may reduce cardiovascular disease according to a systematic review[17] although some randomized controlled trials are negative.[18][19]
Cognition
Vitamin D may help cognition.[20]
Diabetes mellitus type 2
Vitamin D supplementation does not appear to prevent diabetes mellitus type 2.[21]
Chronic pain
Vitamin D supplementation does not seem to reduce chronic pain.[22]
Muscle function
Vitamin D supplementation for individuals with less than 24 ng/mL may improve muscle function according a a randomized controlled trial.[23]
Secondary hyperparathyroidism
Vitamin D can lower levels of parathyroid hormone in patients with secondary hyperparathryoidism from chronic kidney disease.[24]
Vascular disease prevention
Vitamin D may help prevent vascular disease.[17]
Drug toxicity
Vitamin D, when combined with calcium, may increase nephrolithiasis.[25]
References
- ↑ Anonymous (2025), Vitamin D (English). Medical Subject Headings. U.S. National Library of Medicine.
- ↑ 2.0 2.1 Heaney RP. (2008) 10.2215/CJN.01160308 Vitamin D in Health and Disease. Clin. J. Am. Soc. Nephrol. (first published online June 4, 2008)
- ↑ Anonymous (2025), Ergocalciferols (English). Medical Subject Headings. U.S. National Library of Medicine.
- ↑ Anonymous (2025), Cholecalciferol (English). Medical Subject Headings. U.S. National Library of Medicine.
- ↑ 5.0 5.1 Harper, Harold W.; Murray, Robert F. (2000). “Structure and Function of the Lipid-Soluble Vitamins”, Harper's Biochemistry. Norwalk, CT: Appleton & Lange, 645. ISBN 0-8385-3684-0.
- ↑ Anonymous (2025), Calcitriol (English). Medical Subject Headings. U.S. National Library of Medicine.
- ↑ Pearce SH, Cheetham TD (2010). "Diagnosis and management of vitamin D deficiency.". BMJ 340: b5664. DOI:10.1136/bmj.b5664. PMID 20064851. Research Blogging.
- ↑ Rosen, Clifford J. (2011-01-20). "Vitamin D Insufficiency". New England Journal of Medicine 364 (3): 248-254. DOI:10.1056/NEJMcp1009570. ISSN 0028-4793. Research Blogging.
- ↑ Holick MF, Biancuzzo RM, Chen TC, et al (2008). "Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D". J. Clin. Endocrinol. Metab. 93 (3): 677-81. DOI:10.1210/jc.2007-2308. PMID 18089691. Research Blogging.
- ↑ Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP et al. (2011). "Evaluation, treatment, and prevention of vitamin d deficiency: an endocrine society clinical practice guideline.". J Clin Endocrinol Metab 96 (7): 1911-30. DOI:10.1210/jc.2011-0385. PMID 21646368. Research Blogging.
- ↑ Bjelakovic G, Gluud LL, Nikolova D, Whitfield K, Wetterslev J, Simonetti RG et al. (2011). "Vitamin D supplementation for prevention of mortality in adults.". Cochrane Database Syst Rev 7: CD007470. DOI:10.1002/14651858.CD007470.pub2. PMID 21735411. Research Blogging.
- ↑ AGS/BGS Clinical Practice Guideline (2011). Prevention of Falls in Older Persons
- ↑ Lappe,J.M.; Travers-Gustafson,D.; Davies,K.M.; Recker,R.R.; Heaney,R.P. (2007) Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J. Clin Nutr. 85(6):1586-1591. Full Text.
- ↑ Vieth R. (2006) What is the optimal vitamin D status for health? Prog. Biophys. Mol. Biol. 92(1):26-32. Full Text
- ↑ Wactawski-Wende J, Kotchen JM, Anderson GL, Assaf AR, Brunner RL, O'Sullivan MJ et al. (2006). "Calcium plus vitamin D supplementation and the risk of colorectal cancer.". N Engl J Med 354 (7): 684-96. DOI:10.1056/NEJMoa055222. PMID 16481636. Research Blogging. Review in: Evid Based Nurs. 2006 Oct;9(4):114 Review in: ACP J Club. 2006 Jul-Aug;145(1):4-5
- ↑ Kristal AR, Arnold KB, Neuhouser ML, Goodman P, Platz EA, Albanes D et al. (2010). "Diet, supplement use, and prostate cancer risk: results from the prostate cancer prevention trial.". Am J Epidemiol 172 (5): 566-77. DOI:10.1093/aje/kwq148. PMID 20693267. PMC PMC2950820. Research Blogging.
- ↑ 17.0 17.1 Wang L, Manson JE, Song Y, Sesso HD (2010). "Systematic review: Vitamin D and calcium supplementation in prevention of cardiovascular events.". Ann Intern Med 152 (5): 315-23. DOI:10.1059/0003-4819-152-5-201003020-00010. PMID 20194238. Research Blogging.
Cite error: Invalid
<ref>
tag; name "pmid20194238" defined multiple times with different content - ↑ Trivedi DP, Doll R, Khaw KT (2003). "Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial.". BMJ 326 (7387): 469. DOI:10.1136/bmj.326.7387.469. PMID 12609940. PMC PMC150177. Research Blogging. Review in: Evid Based Nurs. 2003 Oct;6(4):113 Review in: J Fam Pract. 2003 Jun;52(6):431-5
- ↑ Hsia J, Heiss G, Ren H, Allison M, Dolan NC, Greenland P et al. (2007). "Calcium/vitamin D supplementation and cardiovascular events.". Circulation 115 (7): 846-54. DOI:10.1161/CIRCULATIONAHA.106.673491. PMID 17309935. Research Blogging.
- ↑ Miller JW (2010). "Vitamin D and cognitive function in older adults: are we concerned about vitamin D-mentia?". Neurology 74 (1): 13-5. DOI:10.1212/WNL.0b013e3181c719a2. PMID 19940269. Research Blogging.
- ↑ Pittas AG, Chung M, Trikalinos T, Mitri J, Brendel M, Patel K et al. (2010). "Systematic review: Vitamin D and cardiometabolic outcomes.". Ann Intern Med 152 (5): 307-14. DOI:10.1059/0003-4819-152-5-201003020-00009. PMID 20194237. Research Blogging.
- ↑ Straube S, Derry S, Moore RA, McQuay HJ (2010). "Vitamin D for the treatment of chronic painful conditions in adults.". Cochrane Database Syst Rev (1): CD007771. DOI:10.1002/14651858.CD007771.pub2. PMID 20091647. Research Blogging.
- ↑ Zhu K, Austin N, Devine A, Bruce D, Prince RL (2010). "A randomized controlled trial of the effects of vitamin D on muscle strength and mobility in older women with vitamin D insufficiency.". J Am Geriatr Soc 58 (11): 2063-8. DOI:10.1111/j.1532-5415.2010.03142.x. PMID 21054285. Research Blogging.
- ↑ Palmer SC, McGregor DO, Craig JC, Elder G, Macaskill P, Strippoli GF (2009). "Vitamin D compounds for people with chronic kidney disease not requiring dialysis.". Cochrane Database Syst Rev (4): CD008175. DOI:10.1002/14651858.CD008175. PMID 19821446. Research Blogging. Review in: Ann Intern Med. 2010 Apr 20;152(8):JC4-12
- ↑ Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE et al. (2006). "Calcium plus vitamin D supplementation and the risk of fractures.". N Engl J Med 354 (7): 669-83. DOI:10.1056/NEJMoa055218. PMID 16481635. Research Blogging. Review in: ACP J Club. 2006 Jul-Aug;145(1):4-5 Review in: Evid Based Nurs. 2006 Oct;9(4):114