Lucas sequence: Difference between revisions
imported>Karsten Meyer mNo edit summary |
imported>Hendra I. Nurdin (major English improvements) |
||
Line 1: | Line 1: | ||
'''Lucas sequences''' are | '''Lucas sequences''' are a particular generalisation of sequences like the [[Fibonacci number|Fibonacci numbers]], [[Lucas number|Lucas numbers]], [[Pell number|Pell numbers]] or [[Jacobsthal number|Jacobsthal numbers]]. These sequences have one common characteristic: they can be generated over [[quadratic equation|quadratic equations]] of the form: <math>\scriptstyle x^2-Px+Q=0\ </math>. | ||
There exists kinds of Lucas sequences: | There exists two kinds of Lucas sequences: | ||
* | *Sequences <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>, | ||
* | *Sequences <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle U_n(P,Q)=a^n+b^n\ </math>, | ||
<math>a\ </math> and <math>b\ </math> are the solutions <math>a = \frac{P + \sqrt{P^2 - 4Q}}{2}</math> and <math>b = \frac{P - \sqrt{P^2 - 4Q}}{2}</math> of the quadratic equation <math>x^2-Px+Q=0 | |||
where <math>\scriptstyle a\ </math> and <math>b\ </math> are the solutions | |||
:<math>a = \frac{P + \sqrt{P^2 - 4Q}}{2}</math> | |||
and | |||
:<math>b = \frac{P - \sqrt{P^2 - 4Q}}{2}</math> | |||
of the quadratic equation <math>\scriptstyle x^2-Px+Q=0</math>. | |||
==Properties== | ==Properties== | ||
*The variables <math>a\ </math> and <math>b\ </math>, and the parameter <math>P\ </math> and <math>Q\ </math> are interdependent. | *The variables <math>\scriptstyle a\ </math> and <math>\scriptstyle b\ </math>, and the parameter <math>\scriptstyle P\ </math> and <math>\scriptstyle Q\ </math> are interdependent. In particular, <math>\scriptstyle P=a+b\ </math> and <math>\scriptstyle Q=a\cdot b.</math>. | ||
*For every sequence <math>U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> | *For every sequence <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> it holds that <math>\scriptstyle U_0 = 0\ </math> and <math>U_1 = 1 </math>. | ||
*For every sequence <math>V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> is | *For every sequence <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> is holds that <math>\scriptstyle V_0 = 2\ </math> and <math>V_1 = P </math>. | ||
For every Lucas sequence | For every Lucas sequence the following are true: | ||
*<math>U_{2n} = U_n\cdot V_n\ </math> | *<math>\scriptstyle U_{2n} = U_n\cdot V_n\ </math> | ||
*<math>V_n = U_{n+1} - QU_{n-1}\ </math> | *<math>\scriptstyle V_n = U_{n+1} - QU_{n-1}\ </math> | ||
*<math>V_{2n} = V_n^2 - 2Q^n\ </math> | *<math>\scriptstyle V_{2n} = V_n^2 - 2Q^n\ </math> | ||
*<math>\operatorname{ggT}(U_m,U_n)=U_{\operatorname{ggT}(m,n)}</math> | *<math>\scriptstyle \operatorname{ggT}(U_m,U_n)=U_{\operatorname{ggT}(m,n)}</math> | ||
*<math>m\mid n\implies U_m\mid U_n</math> | *<math>\scriptstyle m\mid n\implies U_m\mid U_n</math> for all <math>U_m\ne 1</math> | ||
==Fibonacci numbers and Lucas numbers== | ==Fibonacci numbers and Lucas numbers== | ||
The | The two best known Lucas sequences are the Fibonacci numbers <math>\scriptstyle U(1,-1)\ </math> and the Lucas numbers <math>\scriptstyle V(1,-1)\ </math> with <math>\scriptstyle a = \frac{1+\sqrt{5}}{2}</math> and <math>\scriptstyle b = \frac{1-\sqrt{5}}{2}</math>. | ||
==Lucas sequences and the | ==Lucas sequences and the prime numbers== | ||
If the natural number <math>\scriptstyle p\ </math> is a [[prime number]] then it holds that | |||
*<math>p\ </math> divides <math>U_p(P,Q)-\left(\frac Dp\right)</math> | *<math>\scriptstyle p\ </math> divides <math>\scriptstyle U_p(P,Q)-\left(\frac Dp\right)</math> | ||
*<math>p\ </math> divides <math>V_p(P,Q)-P\ </math> | *<math>\scriptstyle p\ </math> divides <math>\scriptstyle V_p(P,Q)-P\ </math> | ||
Fermat's | [[Fermat's Little Theorem]] can then be seen as a special case of <math>\scriptstyle p\ </math> divides <math>\scriptstyle (V_n(P,Q) - P)\ </math> because <math>\scriptstyle a^p \equiv a \mod p</math> is equivalent to <math>\scriptstyle V_p(a+1,a) \equiv V_1(a+1,a) \mod p</math>. | ||
The converse | The converse pair of statements that if <math>\scriptstyle n\ </math> divides <math>\scriptstyle U_n(P,Q)-\left(\frac Dn\right)</math> then is <math>\scriptstyle n\ </math> a prime number and if <math>m\ </math> divides <math>\scriptstyle V_m(P,Q)-P\ </math> then is <math>m\ </math> a prime number) are individually false and lead to [[Fibonacci pseudoprime|Fibonacci pseudoprimes]] and [[Lucas pseudoprime|Lucas pseudoprimes]], respectively. | ||
== Further reading == | == Further reading == | ||
*''The | *P. Ribenboim, ''The New Book of Prime Number Records'' (3 ed.), Springer, 1996, ISBN 0-387-94457-5. | ||
*''My Numbers, | *P. Ribenboim, ''My Numbers, My Friends'', Springer, 2000, ISBN 0-387-98911-0. | ||
[[Category:Mathematics Workgroup]] | [[Category:Mathematics Workgroup]] | ||
[[Category:CZ Live]] | [[Category:CZ Live]] |
Revision as of 01:27, 17 November 2007
Lucas sequences are a particular generalisation of sequences like the Fibonacci numbers, Lucas numbers, Pell numbers or Jacobsthal numbers. These sequences have one common characteristic: they can be generated over quadratic equations of the form: .
There exists two kinds of Lucas sequences:
- Sequences with ,
- Sequences with ,
where and are the solutions
and
of the quadratic equation .
Properties
- The variables and , and the parameter and are interdependent. In particular, and .
- For every sequence it holds that and .
- For every sequence is holds that and .
For every Lucas sequence the following are true:
- for all
Fibonacci numbers and Lucas numbers
The two best known Lucas sequences are the Fibonacci numbers and the Lucas numbers with and .
Lucas sequences and the prime numbers
If the natural number is a prime number then it holds that
- divides
- divides
Fermat's Little Theorem can then be seen as a special case of divides because is equivalent to .
The converse pair of statements that if divides then is a prime number and if divides then is a prime number) are individually false and lead to Fibonacci pseudoprimes and Lucas pseudoprimes, respectively.
Further reading
- P. Ribenboim, The New Book of Prime Number Records (3 ed.), Springer, 1996, ISBN 0-387-94457-5.
- P. Ribenboim, My Numbers, My Friends, Springer, 2000, ISBN 0-387-98911-0.