Necessary and sufficient: Difference between revisions
imported>Peter Schmitt (I hope this page does not make to many words about a simple topic ....) |
imported>Peter Schmitt (criterion) |
||
Line 12: | Line 12: | ||
Another phrase with the same meaning is "[[if and only if]]" (abbreviated to "iff"). | Another phrase with the same meaning is "[[if and only if]]" (abbreviated to "iff"). | ||
<br> | |||
In formulae "necessary and sufficient" is denoted by <math>\Leftrightarrow</math>. | |||
There are also some special terms used to indicate the presence of a necessary and sufficient condition, | |||
usually used for statements of special significance: | |||
A '''criterion''' is a proposition | |||
that expresses a necessary and sufficient condition for a statement to be true. | |||
The term is mostly used in cases | |||
where this condition is easier to check than the statement itself. | |||
<br> | |||
While — in the strict sense of the word — | |||
the condition given in a criterion has to be necessary and sufficient, | |||
the term is sometimes (mostly out of tradition) | |||
also used for conditions which are only sufficient. | |||
== Necessary and sufficient == | == Necessary and sufficient == |
Revision as of 18:14, 1 February 2010
In mathematics, the phrase
"necessary and sufficient"
is frequently used, for instance,
in the formulation of theorems,
in the text of proofs when a step has to be justified,
or when an alternative version for a definition is given.
To say that a statement is "necessary and sufficient" to another statement
means that the statements are either both true or both false.
Another phrase with the same meaning is "if and only if" (abbreviated to "iff").
In formulae "necessary and sufficient" is denoted by .
There are also some special terms used to indicate the presence of a necessary and sufficient condition, usually used for statements of special significance:
A criterion is a proposition
that expresses a necessary and sufficient condition for a statement to be true.
The term is mostly used in cases
where this condition is easier to check than the statement itself.
While — in the strict sense of the word —
the condition given in a criterion has to be necessary and sufficient,
the term is sometimes (mostly out of tradition)
also used for conditions which are only sufficient.
Necessary and sufficient
A statement A is
- "a necessary and sufficient condition",
or shorter,
- "necessary and sufficient"
for another statement B if it is both
- a necessary condition
and
- a sufficient condition
for B.
Necessary
The statement
- A is a necessary condition for B
or shorter
- A is necessary for B
means precisely the same as each of the following statements:
- If A is false then B cannot be true
- B is false whenever A does not hold
- B implies A
Sufficient
The statement
- A is a sufficient condition for B
or shorter
- A is sufficient for B
means precisely the same as each of the following statements:
- A implies B
- B holds whenever A is true
Example
For a sequence of positive real numbers to converge against a real number
- it is necessary that the sequence is bounded,
- it is sufficient that the sequence is monotone decreasing,
- it is necessary and sufficient that it is a Cauchy sequence.
The same statements are expressed by:
- For a sequence the following is true: