Sturm-Liouville theory/Proofs: Difference between revisions
imported>Dan Nessett (more display problem cleanup) |
imported>Dan Nessett (Adjust vertical alignment on some equations) |
||
Line 14: | Line 14: | ||
<span style="text-decoration:overline">f</span>(x) (the complex conjugate of f(x)) to get: | <span style="text-decoration:overline">f</span>(x) (the complex conjugate of f(x)) to get: | ||
<math>-\bar{f} \left( x\right) \frac{d\left( p\left( x\right) \frac{dg}{dx} | <span style="display:inline-block; vertical-align:middle"><math>-\bar{f} \left( x\right) \frac{d\left( p\left( x\right) \frac{dg}{dx} | ||
\left( x\right) \right) }{dx} +\bar{f} \left( x\right) q\left( x\right) | \left( x\right) \right) }{dx} +\bar{f} \left( x\right) q\left( x\right) | ||
g\left( x\right) =\mu \bar{f} \left( x\right) w\left( x\right) g\left( | g\left( x\right) =\mu \bar{f} \left( x\right) w\left( x\right) g\left( | ||
x\right) </math> | x\right) </math> </span> | ||
(Only | (Only | ||
Line 30: | Line 30: | ||
<math>-\bar{f} \left( x\right) \frac{d\left( p\left( x\right) \frac{dg}{dx} | <span style="display:inline-block; vertical-align:middle"><math>-\bar{f} \left( x\right) \frac{d\left( p\left( x\right) \frac{dg}{dx} | ||
\left( x\right) \right) }{dx} +g\left( x\right) \frac{d\left( p\left( | \left( x\right) \right) }{dx} +g\left( x\right) \frac{d\left( p\left( | ||
x\right) \frac{d\bar{f} }{dx} \left( x\right) \right) }{dx} =\frac{d\left( | x\right) \frac{d\bar{f} }{dx} \left( x\right) \right) }{dx} =\frac{d\left( | ||
Line 36: | Line 36: | ||
x\right) -\bar{f} \left( x\right) \frac{dg}{dx} \left( x\right) \right] | x\right) -\bar{f} \left( x\right) \frac{dg}{dx} \left( x\right) \right] | ||
\right) }{dx} =\left( \mu -\bar{\lambda} \right) \bar{f} \left( x\right) | \right) }{dx} =\left( \mu -\bar{\lambda} \right) \bar{f} \left( x\right) | ||
g\left( x\right) w\left( x\right) | g\left( x\right) w\left( x\right) </math></span> <br><br> | ||
Integrate this between the limits | Integrate this between the limits | ||
<math>x=a</math> | <math>x=a</math> | ||
Line 62: | Line 62: | ||
:: <math>\bullet </math> <math>p(x)=0</math>. | :: <math>\bullet </math> <math>p(x)=0</math>. | ||
So: <math>\left( \mu -\bar{\lambda} \right) \int\nolimits_{a}^{b}\bar{f} \left(x\right) g\left( x\right) w\left( x\right) dx =0</math> | So: <span style="display:inline-block; vertical-align:middle"><math>\left( \mu -\bar{\lambda} \right) \int\nolimits_{a}^{b}\bar{f} \left(x\right) g\left( x\right) w\left( x\right) dx =0</math></span> | ||
If we set | If we set | ||
Line 69: | Line 69: | ||
<span style="text-decoration:overline">λ</span> =λ that is, the eigenvalues are real, making the differential operator in the Sturm-Liouville equation self-adjoint (hermitian); so: | <span style="text-decoration:overline">λ</span> =λ that is, the eigenvalues are real, making the differential operator in the Sturm-Liouville equation self-adjoint (hermitian); so: | ||
<math>\left( \mu -\lambda \right) \int\nolimits_{a}^{b}\bar{f} \left( x\right) | <span style="display:inline-block; vertical-align:middle"><math>\left( \mu -\lambda \right) \int\nolimits_{a}^{b}\bar{f} \left( x\right) | ||
g\left( x\right) w\left( x\right) dx =0</math> | g\left( x\right) w\left( x\right) dx =0</math></span> | ||
It follows that, if | It follows that, if |
Latest revision as of 18:34, 4 September 2009
This article proves that solutions to the Sturm-Liouville equation corresponding to distinct eigenvalues are orthogonal. Note that when the Sturm-Liouville problem is regular, distinct eigenvalues are guaranteed. For background see Sturm-Liouville theory.
Orthogonality Theorem
, where f(x) and g(x) are solutions to the Sturm-Liouville equation corresponding to distinct eigenvalues and w(x) is the "weight" or "density" function.
Proof
Let f(x) and g(x) be solutions of the Sturm-Liouville equation (1) corresponding to eigenvalues and respectively. Multiply the equation for g(x) by f(x) (the complex conjugate of f(x)) to get:
(Only f(x), g(x), , and may be complex; all other quantities are real.) Complex conjugate this equation, exchange f(x) and g(x), and subtract the new equation from the original:
Integrate this between the limits
and
.
The right side of this equation vanishes because of the boundary conditions, which are either:
- periodic boundary conditions, i.e., that f(x), g(x), and their first derivatives (as well as p(x)) have the same values at as at , or
- that independently at and at either:
So:
If we set , so that the integral surely is non-zero, then it follows that λ =λ that is, the eigenvalues are real, making the differential operator in the Sturm-Liouville equation self-adjoint (hermitian); so:
It follows that, if and have distinct eigenvalues, then they are orthogonal. QED.