Identity matrix: Difference between revisions
Jump to navigation
Jump to search
imported>Paul Wormer No edit summary |
imported>Richard Pinch (mention Kronecker delta) |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
In [[matrix algebra]], the '''identity matrix''' is a [[square matrix]] which has all the entries on the main [[diagonal]] equal to one and all the other, off-diagonal, entries equal to zero. The identity matrix acts as the [[identity element]] for [[matrix multiplication]]. | In [[matrix algebra]], the '''identity matrix''' is a [[square matrix]] which has all the entries on the main [[diagonal]] equal to one and all the other, off-diagonal, entries equal to zero. The identity matrix acts as the [[identity element]] for [[matrix multiplication]]. Its entries are those of the [[Kronecker delta]]. |
Revision as of 14:44, 8 December 2008
In matrix algebra, the identity matrix is a square matrix which has all the entries on the main diagonal equal to one and all the other, off-diagonal, entries equal to zero. The identity matrix acts as the identity element for matrix multiplication. Its entries are those of the Kronecker delta.