Trichomonas vaginalis: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Fiorella Tapia-Ortiz
imported>Fiorella Tapia-Ortiz
Line 24: Line 24:
Does it have any plasmids?  Are they important to the organism's lifestyle?
Does it have any plasmids?  Are they important to the organism's lifestyle?


==Cell structure and metabolism==
''T. vaginalis'' is an anaerobic protozoan, which uses a hydrogenosome to break down pyruvate into carbon dioxide. In other words, the hydrogenosome functions as a respiratory organelle. Glycolysis takes place with in the hydrogenosome by converting glucose to glycerol and succinate in the cytoplasm. This is followed by converting pyruvate and malate to hydrogen and acetate. It is thought that the hydrogenosome came before the mitochondrion on the phylogenetic tree. Interestingly, the adhesins AP65, AP51, and AP33 mediating binding to vaginal epithelial cells share identity to enzymes of the hydrogenosome organelle and further testing has shown how metabolism is linked to host adherence.
Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.
 
''T. vaginalis'' has a variety of shapes ranging from ellipsoidal, ovoidal, and spherical. Giant forms, 30-50 mm in diameter, have been reported. Changes in cell shape are due to changes in pH, temperature, oxygen tension, and ionic strength.
According to Fine structure of ''Trichomonas vaginalis'' using electron tomography, ''T. vaginalis'' has two different types of flagella; an anterior flagella and a recurrent flagella. It also has different types of cytoskeleton including parabasal filaments, pelta axostyle, and the costa. The costa, found only in trichomonads with an undulating membrane, is assumed to provide mechanical support and the axosyle is a bundle of microtubules.


==Ecology==
==Ecology==

Revision as of 04:16, 4 April 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Attention niels epting.png
Attention niels epting.png
This article is currently being developed as part of an Eduzendium student project. If you are not involved with this project, please refrain from collaboratively developing it until this notice is removed.
Articles that lack this notice, including many Eduzendium ones, welcome your collaboration!


Scientific classification
Kingdom: x
Phylum: x
Class: x
Order: x
Family: x
Genus: x
Species: x
Binomial name
x x


Between 1934 and 1939, Trichomonas vaginalis was identified and classified by Procaccini, an Italian scientist, in Ethiopia. Little information is known of the discovery of Trichomonas vaginalis. Trichomonas vaginalis, a flagellated protozoan, is the causative agent of trichomoniasis belongs to the kingdom Archezoa. The members of this group, E. histolytica and G. lamblia, are parasitic protozoas that adhere to the host lumen, are fermenters (anaerobic respiration), and lack mitochondria. Instead of mitochondria they have a hydrogenosome that generate molecular hydrogen and produce ATP, among its many functions. All the members of Archezoa also have eight flagella and 2 nuclei. Five flagella are near the cytosome, four of which extend outside the cell together. The fifth flagellum’s functionality is the least understood; it wraps along the surface of the organism. Opposite the four flagella that extends outward, lies the barb-like axostyle. The axostyle forms a complex of cross-linked microtubules. The axostyle may be used for attachment to host lumen and can cause the tissue damage noted in trichomoniasis infections. The flagella and axostyle are distinguishing features of T. vaginalis. T. vaginalis is a sexually transmitted infection that can cause sexually transmitted disease in humans; mostly affects the female urinal tract. It is important to isolate the microorganism in the urine by examining morphology and motility. According to the WHO, there are approximately 180 million cases of T. vaginalis worldwide and according to the CDC, 7.4 million new cases occurs in the United States of America.This creates an important health concern.

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

T. vaginalis is an anaerobic protozoan, which uses a hydrogenosome to break down pyruvate into carbon dioxide. In other words, the hydrogenosome functions as a respiratory organelle. Glycolysis takes place with in the hydrogenosome by converting glucose to glycerol and succinate in the cytoplasm. This is followed by converting pyruvate and malate to hydrogen and acetate. It is thought that the hydrogenosome came before the mitochondrion on the phylogenetic tree. Interestingly, the adhesins AP65, AP51, and AP33 mediating binding to vaginal epithelial cells share identity to enzymes of the hydrogenosome organelle and further testing has shown how metabolism is linked to host adherence.

T. vaginalis has a variety of shapes ranging from ellipsoidal, ovoidal, and spherical. Giant forms, 30-50 mm in diameter, have been reported. Changes in cell shape are due to changes in pH, temperature, oxygen tension, and ionic strength. According to Fine structure of Trichomonas vaginalis using electron tomography, T. vaginalis has two different types of flagella; an anterior flagella and a recurrent flagella. It also has different types of cytoskeleton including parabasal filaments, pelta axostyle, and the costa. The costa, found only in trichomonads with an undulating membrane, is assumed to provide mechanical support and the axosyle is a bundle of microtubules.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References