Special function/Catalogs/Catalog: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Aleksander Stos
imported>Aleksander Stos
(→‎References: +classics)
Line 341: Line 341:
* {{cite book | author = Milton Abramowitz and Irene A. Stegun | title = Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | publisher = Dover | date = 1964 | address = New York}} ([http://www.math.sfu.ca/~cbm/aands/ available online])
* {{cite book | author = Milton Abramowitz and Irene A. Stegun | title = Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | publisher = Dover | date = 1964 | address = New York}} ([http://www.math.sfu.ca/~cbm/aands/ available online])
* {{cite book | author = I. S. Gradstein and I. M. Ryzhik | title = Table of integrals, series and products | publisher = Academic Press | date = 2000 | address = London}}  
* {{cite book | author = I. S. Gradstein and I. M. Ryzhik | title = Table of integrals, series and products | publisher = Academic Press | date = 2000 | address = London}}  
* {{cite book | author = A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi | title = Higher Transcendental Functions (Vol I and II) | publisher = McGraw-Hill Book Company | date = 1953 | address = New York - Toronto - London}}


[[Category:CZ Live]]
[[Category:CZ Live]]
[[Category:Mathematics Workgroup]]
[[Category:Mathematics Workgroup]]

Revision as of 02:33, 26 April 2007

Special functions are mathematical functions that turn up so often that they have been named. This page lists the most common special functions by category, along with some of the properties that are important to functions belonging to each category. It must be stressed that there is no single way to categorize functions; any practical classification will contain overlapping categories.

Algebraic functions

Complex parts

Elementary transcendental functions

Name Notation
Exponential function ,
Natural logarithm ,

Trigonometric functions

Name Notation Triangle formula Exponential formula
Sine Opposite / Hypotenuse
Cosine Adjacent / Hypotenuse
Tangent Opposite / Adjacent
Cosecant Hypotenuse / Opposite
Secant Hypotenuse / Adjacent
Cotangent Adjacent / Opposite

Hyperbolic functions

Name Notation Exponential formula
Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent
Hyperbolic cosecant
Hyperbolic secant
Hyperbolic cotangent

Inverse trigonometric functions

Inverse hyperbolic functions

Name Notation Logarithmic formula
Inverse hyperbolic sine
Inverse hyperbolic cosine
Inverse hyperbolic tangent
Inverse hyperbolic cosecant
Inverse hyperbolic secant
Inverse hyperbolic cotangent

Other

Exponential integral related

Function Notation Definition
Exponential integral
Logarithmic integral

Trigonometric integrals:

Function Notation Definition
Sine integral
Hyperbolic sine integral
Cosine integral
Hyperbolic cosine integral

Note: is Euler's constant

Related to the normal distribution:

Name Notation Definition
Gaussian function none standardized
Error function
Complementary error function

See also gamma related functions below; in particular, the incomplete gamma functions.

Bessel function related

Elliptic integrals

Orthogonal polynomials

See catalog of orthogonal polynomials for a more detailed listing.

Name Notation Interval Weight function , , , , ...
Chebyshev (first kind) , , , , ...
Chebyshev (second kind) , , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8x^3 - 4x} , ...
Legendre
Hermite
Laguerre
Associated Laguerre

Factorial and gamma related

Name Notation Discrete formula Continuous formula
Factorial
Gamma function
Double factorial

Binomial coefficient
Rising factorial
Falling factorial
Beta function
Harmonic number
Digamma function
Polygamma function
(of order m)

Notes:

Zeta function related

Hypergeometric functions

Note: many of the preceding functions are special cases of the following:

See also

References

  • Milton Abramowitz and Irene A. Stegun (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover.  (available online)
  • I. S. Gradstein and I. M. Ryzhik (2000). Table of integrals, series and products. Academic Press. 
  • A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi (1953). Higher Transcendental Functions (Vol I and II). McGraw-Hill Book Company.