Riemann-Roch theorem: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>William Hart
imported>William Hart
Line 3: Line 3:
* There is a [[canonical isomorphism]] <math>H^0(L)(K_C\otimes\mathcal{L}^\vee)\cong H^1(\mathcal{L})</math>
* There is a [[canonical isomorphism]] <math>H^0(L)(K_C\otimes\mathcal{L}^\vee)\cong H^1(\mathcal{L})</math>


=== some examples ===
=== Some examples ===
The examples we give arrise from considering complete [[linear systems]] on curves.   
The examples we give arise from considering complete [[linear systems]] on curves.   
* Any curve <math>C</math> of genus 0 is ismorphic to the projective line: Indeed if p is a point on the curve then <math>h^0(p)-0=1-(0-1)=2</math>; hence the map <math>C\to\mathbb{P}H^0(O_C(p))</math> is a degree 1 map, or an isomorphism.
* Any curve <math>C</math> of genus 0 is isomorphic to the projective line: Indeed if p is a point on the curve then <math>h^0(p)-0=1-(0-1)=2</math>; hence the map <math>C\to\mathbb{P}H^0(O_C(p))</math> is a degree 1 map, or an isomorphism.
* Any curve of genus 1 is a double cover of a projective line: Indeed if p is a point on the curve then <math>h^0(2p)-0=2-(1-1)=2</math>; hence the map <math>C\to\mathbb{P}H^0(O_C(2p))</math> is a degree 2 map,
* Any curve of genus 1 is a double cover of a projective line: Indeed if p is a point on the curve then <math>h^0(2p)-0=2-(1-1)=2</math>; hence the map <math>C\to\mathbb{P}H^0(O_C(2p))</math> is a degree 2 map.
* Any curve of genus 2 is a double cover of a projective line: Indeed the degree of the [[cannonical class]] <math>K_C</math> is <math>2g-2</math> and therefor <math>h^0(K_C)-h^0(O_C)=2-(2-1)=1</math>; since <math>h^0(O_C)=1</math> the map <math>C\to\mathbb{P}H^0(K_C)</math> is a degree 2 map,
* Any curve of genus 2 is a double cover of a projective line: Indeed the degree of the [[canonical class]] <math>K_C</math> is <math>2g-2</math> and therefore <math>h^0(K_C)-h^0(O_C)=2-(2-1)=1</math>; since <math>h^0(O_C)=1</math> the map <math>C\to\mathbb{P}H^0(K_C)</math> is a degree 2 map.


=== Geometric Riemann-Roch ===
=== Geometric Riemann-Roch ===

Revision as of 06:19, 23 February 2007

In algebraic geometry the Riemann-Roch theorem states that if is a smooth algebraic curve, and is an invertible sheaf on then the the following properties hold:

  • The Euler characteristic of is given by
  • There is a canonical isomorphism

Some examples

The examples we give arise from considering complete linear systems on curves.

  • Any curve of genus 0 is isomorphic to the projective line: Indeed if p is a point on the curve then ; hence the map is a degree 1 map, or an isomorphism.
  • Any curve of genus 1 is a double cover of a projective line: Indeed if p is a point on the curve then ; hence the map is a degree 2 map.
  • Any curve of genus 2 is a double cover of a projective line: Indeed the degree of the canonical class is and therefore ; since the map is a degree 2 map.

Geometric Riemann-Roch

From the statement of the theorem one sees that an effective divisor of degree on a curve satisfies if and only if there is an effective divisor such that in . In this case there is a natural isomorphism , where we identify with it's image in the dual canonical system .

As an example we consider effective divisors of degrees on a non hyperelliptic curve of genus 3. The degree of the canonical class is , whereas . Hence the canonical image of is a smooth plane quartic. We now idenitfy with it's image in the dual canonical system. Let be two points on then there are exactly two points such that , where we intersect with multiplicities, and if we consider the tangent line instead of the line . Hence there is a natural isomorphism between and the unique point in representing the line . There is also a natural ismorphism between and the points in representing lines through the points .

Generalizations

Proofs

Using modern tools, the theorem is an immediate consequence of Serre's duality.