Origin of life: Difference between revisions
imported>David Tribe |
imported>David Tribe |
||
Line 7: | Line 7: | ||
==Sources of energy== | ==Sources of energy== | ||
==Community metabolism== | ==Community metabolism== | ||
==Emergence of cells== | |||
==References== | ==References== | ||
===Citations=== | ===Citations=== |
Revision as of 18:44, 25 January 2007
This is a stub
An early question that needs to be confronted, indeed a question that in the last analysis requires definition, is: What is life? Most biologists would agree that self-replication, genetic continuity, is a fundamental trait of the life process. Systems that generally would be deemed nonbiological can exhibit a sort of self-replication, however. Examples would be the growth of a crystal lattice or a propagating clay structure. Crystals and clays propagate, unquestionably, but life they are not. There is no locus of genetic continuity, no organism. Such systems do not evolve, do not change in genetic ways to meet new challenges. Consequently, the definition of life should include the capacity for evolution as well as self-replication. Indeed, the mechanism of evolution---natural selection---is a consequence of the necessarily competing drives for self-replication that are manifest in all organisms. The definition based on those processes, then, would be that life is any self-replicating, evolving system (Norman R Pace 2001).[1]
The first replicators
The RNA World
Sources of energy
Community metabolism
Emergence of cells
References
Citations
Further reading
- Goldenfeld N Woese C (2007) Essays: Connections. Biology's next revolution The emerging picture of microbes as gene–swapping collectives demands a revision of such concepts as organism, species and evolution itself. Nature 445:369 (25 January 2007) doi:10.1038/445369a