Differential equation: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Jitse Niesen
(start list, per CZ:Article Mechanics)
mNo edit summary
 
(13 intermediate revisions by 11 users not shown)
Line 1: Line 1:
In [[mathematics]], a '''differential equation''' is an [[equation]] relating a [[function (mathematics)|function]] and its derivatives. Many of the fundamental laws of physics, chemistry, biology and economics can be formulated as differential equations. The question then becomes how to find the ''solutions'' of those equations.
{{subpages}}


The mathematical theory of differential equations has developed together with the sciences where the equations originate and where the results find application. Diverse scientific fields often give rise to identical problems in differential equations. In such cases, the mathematical theory can unify otherwise quite distinct scientific fields. A celebrated example is [[Joseph Fourier|Fourier]]'s theory of the conduction of heat in terms of sums of trigonometric functions, [[Fourier series]],  which finds application in the propagation of sound, the propagation of electric and magnetic fields, radio waves, optics, elasticity, spectral analysis of radiation, and other scientific fields.
In [[mathematics]], a '''differential equation''' or '''DE''' is an [[equation (mathematics)|equation]] relating a [[function (mathematics)|function]] and its [[derivative]]s, the idea being that how a quantity will change is related in some way to its current value. Many of the fundamental laws of physics, chemistry, biology and economics can be formulated as differential equations. The question then becomes how to find the ''solutions'' of those equations.
 
The mathematical theory of differential equations has developed in parallel with the sciences where the equations originate and where the results find application. Diverse scientific fields often give rise to identical problems in differential equations. In such cases, the mathematical theory can unify otherwise quite distinct scientific fields. A celebrated example is [[Joseph Fourier|Fourier]]'s theory of the conduction of heat in terms of sums of trigonometric functions, [[Fourier series]],  which finds application in the propagation of sound; the propagation of electric and magnetic fields (including radio waves, visible light, [[X-rays]], and the entire [[electromagnetic spectrum]]), as well as spectral analysis of radiation; elasticity; [[quantum mechanics]]; and many other areas of scientific research.


== Examples ==
== Examples ==
Line 8: Line 10:
:<math> \frac{du(t)}{dt} = u(t). </math>
:<math> \frac{du(t)}{dt} = u(t). </math>
This equation is satisfied by any function which equals its derivative. One of the solutions of this equation is <math> u(t) = e^t </math>.
This equation is satisfied by any function which equals its derivative. One of the solutions of this equation is <math> u(t) = e^t </math>.
Note that to say that a specific function (in this case <math>e^t</math> ) is a solution to a differential equation means that if you
plug that function into the left-hand side of the DE and evaluate it, the result will be the right-hand side.
In this case that happens automatically since
:<math> \frac{du(t)}{dt} = \frac{d\left(e^t\right)}{dt} = e^t = u(t)\ . </math>


Nonlinear equations and systems of equations frequently occur in the study of physical systems. An important example of a nonlinear oscillator is the [[Lorenz System]]
Nonlinear equations and systems of equations frequently occur in the study of physical systems. An important example of a nonlinear oscillator is the [[Lorenz system]]
 
:<math>\dot{x} = \sigma(y - x)</math>


:<math>\dot{y} = \rho x - y - x - xz</math>
:<math>\begin{align}
\dot{x} &= \sigma(y - x) \\
\dot{y} &= \rho x - y - x - xz \\
\dot{z} &= - \beta z + xy
\end{align} </math>


:<math>\dot{z} = - \beta z + xy</math>
where <math>x,</math> <math>y,</math> and <math>z</math> are functions of <math>t,</math> and a dot represents the derivative with respect to <math>t</math>,
i.e.
:<math>\dot{x}=\frac{dx(t)}{dt}\ .</math>


This is a basic example of a system with [[chaos|chaotic]] behavior.
This is a basic example of a system with [[chaos|chaotic]] behavior.


The [[Schrödinger equation]] is fundamental in [[quantum mechanics]]. It is given by
The [[Schrödinger equation]] is a partial differential equation (or PDE) of fundamental importance in [[quantum mechanics]].
:<math> i\hbar \frac{\partial\psi(x,t)}{\partial t} = - \frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2}. </math>
It governs the evolution of quantum systems and is given by
:<math> i\hbar \frac{\partial\psi(x,t)}{\partial t} = - \frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2} + V(x,t)\psi(x,t)\ . </math>


Another example of a partial differential equation (or PDE) is the [[heat equation]]
Another example of a PDE is the [[heat equation]] or diffusion equation,


:<math>\frac{\partial u}{\partial t} = k (\frac{\partial^2 u}{\partial^2 x} +\frac{\partial^2 u}{\partial^2 y})</math>
:<math>\frac{\partial u}{\partial t} = k \left(\frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2}\right)</math>


The reason that these two equations (the [[Schrödinger equation]] and the [[heat equation]]) are called [[partial differential equation]]s is that the unknown (<math>\psi</math> in the Schrödinger equation, and u in the heat equation) depends on multiple variables, and the equation involves [[partial derivative]]s with respect to these variables.
The reason that these two equations (the [[Schrödinger equation]] and the [[heat equation]]) are called [[partial differential equation]]s is that the unknown (<math>\psi</math> in the Schrödinger equation, and u in the heat equation) depends on multiple variables, and the equation involves [[partial derivative]]s with respect to these variables.
Line 36: Line 47:
* [[Inhomogeneous Helmholtz equation]]: <math> \nabla^2 u + k^2 u = -f </math>
* [[Inhomogeneous Helmholtz equation]]: <math> \nabla^2 u + k^2 u = -f </math>
* [[Schrödinger equation]]: <math> i\hbar \psi_t = - \frac{\hbar^2}{2m} \psi_{xx} </math>
* [[Schrödinger equation]]: <math> i\hbar \psi_t = - \frac{\hbar^2}{2m} \psi_{xx} </math>
 
* The simple [[harmonic oscillator (classical)|harmonic oscillator]] equation: <math>m\ddot{x}+kx=0</math>
 
* General harmonic oscillator: <math>m\ddot{x}+b\dot{x}+kx=A\cos(\omega t)</math>
[[Category:Mathematics Workgroup]]
* Lotka-Volterra predator-prey: <math>\frac{dx}{dt}=Ax-Bxy</math>, <math>\frac{dy}{dt}=-Cy-Dxy</math>[[Category:Suggestion Bot Tag]]
[[Category:CZ Live]]

Latest revision as of 06:01, 7 August 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a differential equation or DE is an equation relating a function and its derivatives, the idea being that how a quantity will change is related in some way to its current value. Many of the fundamental laws of physics, chemistry, biology and economics can be formulated as differential equations. The question then becomes how to find the solutions of those equations.

The mathematical theory of differential equations has developed in parallel with the sciences where the equations originate and where the results find application. Diverse scientific fields often give rise to identical problems in differential equations. In such cases, the mathematical theory can unify otherwise quite distinct scientific fields. A celebrated example is Fourier's theory of the conduction of heat in terms of sums of trigonometric functions, Fourier series, which finds application in the propagation of sound; the propagation of electric and magnetic fields (including radio waves, visible light, X-rays, and the entire electromagnetic spectrum), as well as spectral analysis of radiation; elasticity; quantum mechanics; and many other areas of scientific research.

Examples

A simple differential equation is

This equation is satisfied by any function which equals its derivative. One of the solutions of this equation is . Note that to say that a specific function (in this case ) is a solution to a differential equation means that if you plug that function into the left-hand side of the DE and evaluate it, the result will be the right-hand side. In this case that happens automatically since

Nonlinear equations and systems of equations frequently occur in the study of physical systems. An important example of a nonlinear oscillator is the Lorenz system

where and are functions of and a dot represents the derivative with respect to , i.e.

This is a basic example of a system with chaotic behavior.

The Schrödinger equation is a partial differential equation (or PDE) of fundamental importance in quantum mechanics. It governs the evolution of quantum systems and is given by

Another example of a PDE is the heat equation or diffusion equation,

The reason that these two equations (the Schrödinger equation and the heat equation) are called partial differential equations is that the unknown ( in the Schrödinger equation, and u in the heat equation) depends on multiple variables, and the equation involves partial derivatives with respect to these variables.

The order of a differential equation is that of the highest derivative that it contains. For instance, the equation

is a first-order differential equation, while the Schrödinger equation and heat equation are examples of second order equations.

List of differential equations

  • Inhomogeneous Helmholtz equation:
  • Schrödinger equation:
  • The simple harmonic oscillator equation:
  • General harmonic oscillator:
  • Lotka-Volterra predator-prey: ,