Ideal gas law/Tutorials: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
mNo edit summary
imported>Milton Beychok
m (Revised heading rank of "Answer" to Problem 5 (i.e., from === to ====))
 
(8 intermediate revisions by 4 users not shown)
Line 7: Line 7:
*<i>All pressures are [[Pressure#Absolute_pressure_versus_gauge_pressure|absolute]].</i>
*<i>All pressures are [[Pressure#Absolute_pressure_versus_gauge_pressure|absolute]].</i>


* <i> The molar gas constant</i> ''R'' = 0.082057 atm&sdot;L/(K&sdot;mol)
* <i> The molar gas constant</i> ''R'' = 0.082057 atm·L/(K·mol).
 
<!--*  1 bar = 0.98692 atm -->
== Example problems ==
== Example problems ==
''See also the tutorials on the [[Ideal gas law/Video|Video subpage]].''
===Problem 1===
Determine the volume of 1 mol of ideal gas at pressure 1 atm and temperature 20 °C.
:<math>
V = \frac{n\,R\,T}{p} = \frac{1\cdot 0.082057\cdot (20+273.15)}{1} \quad\left[
\frac{ \mathrm{mol}\cdot\frac {\mathrm{atm}\cdot\mathrm{L}} {\mathrm{K}\cdot\mathrm{mol}}
      \cdot\mathrm{K} }
    {\mathrm{atm}} \right]
= 24.0550 \quad [\mathrm{L}]
</math>
===Problem 2===
Compute from Charles' and Gay-Lussac's law (''V''/''T'' is constant) the volume of an ideal gas at 1 atm and 0 °C (Use the final result of the previous problem). Write ''V''<sub>''T''</sub> for the volume at ''T'' °C, then
:<math>
\frac{V_{20}}{273.15+20} = \frac{V_0}{273.15+0} \quad\Longrightarrow
V_0  = 273.15 \times \frac{24.0550}{293.15} = 22.4139\; \;[\mathrm{L}]
</math>


===Problem 1===  
===Problem 3===  
A certain amount of gas that has an initial pressure of 1 atm and an initial volume of 2 L, is compressed to a final pressure of 5 atm at constant temperature.  What is the final volume of the gas?
A certain amount of gas that has an initial pressure of 1 atm and an initial volume of 2 L, is compressed to a final pressure of 5 atm at constant temperature.  What is the final volume of the gas?


=====Boyle's law (''pV'' is constant)=====  
====Boyle's law (''pV'' is constant)====  
:<math>
:<math>
(1.1)\qquad\qquad  p_\mathrm{i}\,V_\mathrm{i}  = p_\mathrm{f}\,V_\mathrm{f}  
(1.1)\qquad\qquad  p_\mathrm{i}\,V_\mathrm{i}  = p_\mathrm{f}\,V_\mathrm{f}  
Line 23: Line 43:
Inserting the given numbers
Inserting the given numbers
:<math>
:<math>
(1.3)\qquad\qquad  V_\mathrm{f} = \left(\frac{1\sdot 2}{5}\right)\; \frac{\mathrm{atm}\sdot\mathrm{L}}{\mathrm{atm}}  = 0.4\; \mathrm{L}  
(1.3)\qquad\qquad  V_\mathrm{f} = \left(\frac{1\cdot 2}{5}\right)\;\left[ \frac{\mathrm{atm}\sdot\mathrm{L}}{\mathrm{atm}} \right]   = 0.4\; [\mathrm{L}]
</math>
</math>


=====Ideal gas law=====
====Ideal gas law====
The number ''n'' of moles is constant
The number ''n'' of moles is constant
:<math>
:<math>
Line 35: Line 55:
It is given that the initial and final temperature are equal, <math>T_\mathrm{i} = T_\mathrm{f}\, </math>, therefore the products ''RT''  on both sides of the equation cancel, and  Eq. (1.4) reduces to Eq. (1.1).
It is given that the initial and final temperature are equal, <math>T_\mathrm{i} = T_\mathrm{f}\, </math>, therefore the products ''RT''  on both sides of the equation cancel, and  Eq. (1.4) reduces to Eq. (1.1).


 
===Problem 4===
===Problem 2===
How many moles of nitrogen are present in a 50 L tank at 25 °C when the pressure is 10 atm?  Numbers include only 3 significant figures.
How many moles of nitrogen are present in a 50 L tank at 25 °C when the pressure is 10 atm?  Numbers include only 3 significant figures.
    
    
:<math>
:<math>
n=\frac{p\,V}{R\,T} = \frac{10.0\cdot 50.0} {0.0821 \cdot (273+25.0)}
n=\frac{p\,V}{R\,T} = \frac{10.0\cdot 50.0} {0.0821 \cdot (273+25.0)}
\quad
\quad \left[
\frac{\mathrm{atm}\cdot \mathrm{L}}{\frac{\mathrm{atm} \cdot \mathrm{L}}{\mathrm{K}\cdot \mathrm{mol}}\cdot\mathrm{K}}
\frac{\mathrm{atm}\cdot \mathrm{L}}{\frac{\mathrm{atm} \cdot \mathrm{L}}{\mathrm{K}\cdot \mathrm{mol}}\cdot\mathrm{K}} \right]
=\frac{500}{0.0821 \cdot 298}\quad \frac{\mathrm{mol} \cdot \mathrm{atm}\cdot \mathrm{L}}{\mathrm{atm}\cdot \mathrm{L}} = 20.4 \quad \mathrm{mol}
=\frac{500}{0.0821 \cdot 298}\quad\left[ \frac{\mathrm{mol} \cdot \mathrm{atm}\cdot \mathrm{L}}{\mathrm{atm}\cdot \mathrm{L}} \right] = 20.4 \quad [\mathrm{mol}]
</math>
 
===Problem 5===
Given is that dry air consists of 78.1% N<sub>2</sub>, 20.1% O<sub>2</sub>, and 0.8% Ar (volume percentages).  The [[Atomic_mass#Standard_Atomic_Weights_of_the_Elements|atomic weights]]  of N, O, and Ar are 14.0, 16.0 and 39.9, respectively. Compute the mass of 1 m<sup>3</sup> of dry air at 1 atm and 20 °C.


====Answer====
Since for ideal gases the volume ''V'' is proportional to the number of moles ''n'', a volume percentage is equal to a molar percentage. For instance, for a mixture of two gases, it is easily shown that
:<math>
\frac{n_1}{n_1+n_2} = \frac{V_1}{V_1+V_2}
</math>
</math>
which states that the molar percentage of gas 1 is equal to the volume percentage of gas 1.
The mass of 1 mole of dry air is
:M  = 0.781&times;28.0 + 0.201&times;32.0 + 0.008&times;39.9  g = 28.6192 g
In problem 1 it is found that the volume of 1 mole of ideal gas at 1 atm and 20 °C is 24.0550 L = 24.0550&times;10<sup>&minus;3</sup> m<sup>3</sup>, or
:1 m<sup>3</sup> contains 1/(24.0550&times;10<sup>&minus;3</sup>) = 41.5714  mol
Hence the mass of 1 cubic meter of dry air is
:M = 28.6192 &times; 41.5714 = 1189.7 g = 1.1897 kg

Latest revision as of 13:03, 16 January 2009

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Video [?]
Tutorials [?]
 
Tutorials relating to the topic of Ideal gas law.
  • All gases mentioned below are assumed to be ideal, i.e. their p, V, T dependence is given by the ideal gas law.
  • The molar gas constant R = 0.082057 atm·L/(K·mol).

Example problems

See also the tutorials on the Video subpage.

Problem 1

Determine the volume of 1 mol of ideal gas at pressure 1 atm and temperature 20 °C.

Problem 2

Compute from Charles' and Gay-Lussac's law (V/T is constant) the volume of an ideal gas at 1 atm and 0 °C (Use the final result of the previous problem). Write VT for the volume at T °C, then


Problem 3

A certain amount of gas that has an initial pressure of 1 atm and an initial volume of 2 L, is compressed to a final pressure of 5 atm at constant temperature. What is the final volume of the gas?

Boyle's law (pV is constant)

or

Inserting the given numbers

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1.3)\qquad\qquad V_\mathrm{f} = \left(\frac{1\cdot 2}{5}\right)\;\left[ \frac{\mathrm{atm}\sdot\mathrm{L}}{\mathrm{atm}} \right] = 0.4\; [\mathrm{L}] }

Ideal gas law

The number n of moles is constant

It is given that the initial and final temperature are equal, , therefore the products RT on both sides of the equation cancel, and Eq. (1.4) reduces to Eq. (1.1).

Problem 4

How many moles of nitrogen are present in a 50 L tank at 25 °C when the pressure is 10 atm? Numbers include only 3 significant figures.

Problem 5

Given is that dry air consists of 78.1% N2, 20.1% O2, and 0.8% Ar (volume percentages). The atomic weights of N, O, and Ar are 14.0, 16.0 and 39.9, respectively. Compute the mass of 1 m3 of dry air at 1 atm and 20 °C.

Answer

Since for ideal gases the volume V is proportional to the number of moles n, a volume percentage is equal to a molar percentage. For instance, for a mixture of two gases, it is easily shown that

which states that the molar percentage of gas 1 is equal to the volume percentage of gas 1.

The mass of 1 mole of dry air is

M = 0.781×28.0 + 0.201×32.0 + 0.008×39.9 g = 28.6192 g

In problem 1 it is found that the volume of 1 mole of ideal gas at 1 atm and 20 °C is 24.0550 L = 24.0550×10−3 m3, or

1 m3 contains 1/(24.0550×10−3) = 41.5714 mol

Hence the mass of 1 cubic meter of dry air is

M = 28.6192 × 41.5714 = 1189.7 g = 1.1897 kg