Cocountable topology: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chris Day
No edit summary
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}  
In [[mathematics]], the '''cocountable topology''' is the [[topology]] on a [[set (mathematics)|set]] in which the [[open set]]s are those which have [[countable set|countable]] [[complement (set theory)|complement]], together with the empty set.  Equivalently, the [[closed set]]s are the countable sets, together with the whole space.
In [[mathematics]], the '''cocountable topology''' is the [[topology]] on a [[set (mathematics)|set]] in which the [[open set]]s are those which have [[countable set|countable]] [[complement (set theory)|complement]], together with the empty set.  Equivalently, the [[closed set]]s are the countable sets, together with the whole space.


Line 8: Line 8:


==References==
==References==
* {{cite book | author=Lynn Arthur Steen | authorlink=Lynn Arthur Steen | coauthors= J. Arthur Seebach jr | title=[[Counterexamples in Topology]] | year=1978 | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=0-387-90312-7 | pages=50-51 }}
* {{cite book | author=Lynn Arthur Steen | authorlink=Lynn Arthur Steen | coauthors= J. Arthur Seebach jr | title=[[Counterexamples in Topology]] | year=1978 | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=0-387-90312-7 | pages=50-51 }}[[Category:Suggestion Bot Tag]]

Latest revision as of 06:01, 30 July 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, the cocountable topology is the topology on a set in which the open sets are those which have countable complement, together with the empty set. Equivalently, the closed sets are the countable sets, together with the whole space.

Properties

If X is countable, then the cocountable topology on X is the discrete topology, in which every set is open. We therefore assume that X is an uncountable set with the cocountable topology; it is:

References