Cerebral cortex: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Daniel Mietchen
(image)
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
{{Image|Mouse cerebral cortex coronal slice.jpg|right|350px|[[Coronal section]] in the [[forebrain]] of an [[embryo]]nic [[mouse]] at 12.5 days of [[gestation]] ([[preplate stage]]), showing the [[lateral ganglionic eminence|lateral]] and [[medial ganglionic eminence]]s (LGE, MGE) from which [[GABAergic neuron|GABAergic]] [[interneuron]]s [[neuronal migration|migrate]] to the cortical [[anlage]] (left, yellow). [[Glutamatergic neuron]]s destined for the cortex are generated locally in the [[cortical ventricular zone]] and migrate radially (right, red). }}
{{Image|Mouse cerebral cortex coronal slice.jpg|right|350px|[[Coronal section]] in the [[forebrain]] of an [[embryo]]nic [[mouse]] at 12.5 days of [[gestation]] ([[preplate stage]]), showing the [[lateral ganglionic eminence|lateral]] and [[medial ganglionic eminence]]s (LGE, MGE) from which [[GABAergic neuron|GABAergic]] [[interneuron]]s [[neuronal migration|migrate]] to the cortical [[anlage]] (left, yellow). [[Glutamatergic neuron]]s destined for the cortex are generated locally in the [[cortical ventricular zone]] and migrate radially (right, red). }}


The '''cerebral cortex''' represents the outermost tissue layers within the [[telencephalon]] (aka as ''cerebrum'') of [[vertebrate]]s. It can be subdivided into the [[neocortex]], the [[hippocampal formation]] and the [[olfactory cortex]]. Together with the [[basal ganglia]], the cerebral cortex forms the [[gray matter]] of the [[brain]] which contains large numbers of [[nerve cell]] bodies and is connected by [[white matter]], characterized by [[myelin]]ated [[nerve fibre]]s. In [[reptile]]s, the cortex consists of three layers, in [[mammal]]s of six. In larger mammals, it is folded into [[gyrus|gyri]] and [[sulcus|sulci]] which increases the cortical surface area relative to the cortical volume — a process known as [[gyrification]]. The [[cortical thickness|thickness of the cerebral cortex]] varies between different regions, with values from around 2mm to 4mm being normal in mammals. Changes in cortical thickness correlate with both [[brain maturation]] and [[aging]] and are especially pronounced in [[dementia]].
The '''cerebral cortex''' represents the outermost tissue layers within the [[telencephalon]] (aka as ''cerebrum'') of [[vertebrate]]s. It can be subdivided into the [[neocortex]], the [[hippocampal formation]] and the [[olfactory cortex]]. Together with the [[basal ganglia]], the cerebral cortex forms the [[grey matter]] of the [[brain]] which contains large numbers of [[nerve cell]] bodies and is connected by [[white matter]], characterized by [[myelin]]ated [[nerve fibre]]s. In [[reptile]]s, the cortex consists of three layers, in [[mammal]]s of six. In larger mammals, it is folded into [[gyrus|gyri]] and [[sulcus|sulci]] which increases the cortical surface area relative to the cortical volume — a process known as [[gyrification]]. The [[cortical thickness|thickness of the cerebral cortex]] varies between different regions, with values from around 2mm to 4mm being normal in mammals. Changes in cortical thickness correlate with both [[brain maturation]] and [[aging]] and are especially pronounced in [[dementia]].


==Ontogeny==
==Ontogeny==
Three main processes govern the development of the cerebral cortex: [[cell proliferation|proliferation]] of [[neural]] [[progenitor cell]]s, [[neuronal migration]] and the establishment of [[brain connectivity]] via [[synaptic pruning]] and [[myelination]]. These processes are most important during [[fetal development|fetal]] and early [[postnatal development]] but continue throughout life, with a second maximum during [[adolescence]], particularly in the [[forebrain]].
Three main processes govern the development of the cerebral cortex: [[cell proliferation|proliferation]] of [[neural]] [[progenitor cell]]s, [[neuronal migration]] and the establishment of [[brain connectivity]] via [[synaptic pruning]] and [[myelination]]. These processes are most important during [[fetal development|fetal]] and early [[postnatal development]] but continue throughout life, with a second maximum during [[adolescence]], particularly in the [[forebrain]].[[Category:Suggestion Bot Tag]]

Latest revision as of 11:01, 26 July 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

This article uses direct referencing.

(CC) Image: André M Goffinet, 2006; courtesy of V. Pachnis
Coronal section in the forebrain of an embryonic mouse at 12.5 days of gestation (preplate stage), showing the lateral and medial ganglionic eminences (LGE, MGE) from which GABAergic interneurons migrate to the cortical anlage (left, yellow). Glutamatergic neurons destined for the cortex are generated locally in the cortical ventricular zone and migrate radially (right, red).

The cerebral cortex represents the outermost tissue layers within the telencephalon (aka as cerebrum) of vertebrates. It can be subdivided into the neocortex, the hippocampal formation and the olfactory cortex. Together with the basal ganglia, the cerebral cortex forms the grey matter of the brain which contains large numbers of nerve cell bodies and is connected by white matter, characterized by myelinated nerve fibres. In reptiles, the cortex consists of three layers, in mammals of six. In larger mammals, it is folded into gyri and sulci which increases the cortical surface area relative to the cortical volume — a process known as gyrification. The thickness of the cerebral cortex varies between different regions, with values from around 2mm to 4mm being normal in mammals. Changes in cortical thickness correlate with both brain maturation and aging and are especially pronounced in dementia.

Ontogeny

Three main processes govern the development of the cerebral cortex: proliferation of neural progenitor cells, neuronal migration and the establishment of brain connectivity via synaptic pruning and myelination. These processes are most important during fetal and early postnatal development but continue throughout life, with a second maximum during adolescence, particularly in the forebrain.