Air pollutant concentrations: Difference between revisions
imported>Milton Beychok (Minor copy edit) |
mNo edit summary |
||
(18 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{subpages}} | {{PropDel}}<br><br>{{subpages}} | ||
'''Air pollutant concentrations''', as measured or as calculated by [[air pollution dispersion modeling]], must often be converted or corrected to be expressed as required by the regulations issued by various governmental agencies. Regulations that define and limit the [[concentration]] of [[pollutant]]s in the ambient air or in gaseous [[emission]]s to the ambient air are issued by various national and state (or provincial) [[United States Environmental Protection Agency|environmental protection]] and [[United States Occupational Safety and Health Administration|occupational health and safety]] agencies. | '''Air pollutant concentrations''', as measured or as calculated by [[air pollution dispersion modeling]]<ref>{{cite book|author=M.R. Beychok|title=[http://www.air-dispersion.com Fundamentals of Stack Gas Dispersion]|edition=4th Edition|publisher=Self-published|year=2005|id=ISBN 0-9644588-0-2}}</ref>, must often be converted or corrected to be expressed as required by the regulations issued by various governmental agencies. Regulations that define and limit the [[concentration]] of [[pollutant]]s in the ambient air or in gaseous [[emission]]s to the ambient air are issued by various national and state (or provincial) [[United States Environmental Protection Agency|environmental protection]] and [[United States Occupational Safety and Health Administration|occupational health and safety]] agencies. | ||
Such regulations involve a number of different expressions of concentration. Some express the concentrations as ppmv ([[parts per million]] by volume) and some express the concentrations as mg/m<sup>3</sup> (milligrams per cubic meter), while others require adjusting or correcting the concentrations to reference conditions of moisture content, [[oxygen]] content or [[carbon dioxide]] content. This article presents methods for converting concentrations from ppmv to mg/m<sup>3</sup> (and vice versa) and for correcting the concentrations to the required reference conditions. | Such regulations involve a number of different expressions of concentration. Some express the concentrations as ppmv ([[parts per million]] by volume) and some express the concentrations as mg/m<sup>3</sup> (milligrams per cubic meter), while others require adjusting or correcting the concentrations to reference conditions of moisture content, [[oxygen]] content or [[carbon dioxide]] content. This article presents methods for converting concentrations from ppmv to mg/m<sup>3</sup> (and vice versa) and for correcting the concentrations to the required reference conditions. | ||
All of the concentrations and concentration corrections in this article apply only to air and other gases. They are not applicable for liquids. | All of the concentrations and concentration corrections in this article apply only to air and other gases. They are not applicable for liquids. | ||
==Converting air pollutant concentrations== | ==Converting air pollutant concentrations== | ||
Line 50: | Line 50: | ||
==Correcting concentrations for altitude== | ==Correcting concentrations for altitude== | ||
Air pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m<sup>3</sup>, µg/m<sup>3</sup>, etc.) at sea level will decrease with increasing [[altitude]]. The concentration decrease is directly proportional to the pressure decrease with increasing altitude. Some governmental regulatory jurisdictions require industrial sources of air pollution to comply with sea level standards corrected for altitude. In other words, industrial air pollution sources located at altitudes well above sea level must comply with significantly more stringent air quality standards than sources located at sea level (since it is more difficult to comply with lower standards). For example, [[New Mexico]]'s Department of the Environment has a regulation with such a requirement.<ref>[http:// | Air pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m<sup>3</sup>, µg/m<sup>3</sup>, etc.) at sea level will decrease with increasing [[altitude]]. The concentration decrease is directly proportional to the pressure decrease with increasing altitude. Some governmental regulatory jurisdictions require industrial sources of air pollution to comply with sea level standards corrected for altitude. In other words, industrial air pollution sources located at altitudes well above sea level must comply with significantly more stringent air quality standards than sources located at sea level (since it is more difficult to comply with lower standards). For example, [[New Mexico (U.S. state)|New Mexico]]'s Department of the Environment has a regulation with such a requirement.<ref>[http://energy.gov/sites/prod/files/nepapub/nepa_documents/RedDont/EIS-0236-FEIS-04-1996.pdf Draft Programmatic Environmental Impact Statement (EIS) for Stockpile Stewardship and Management, Volume 4] See section 03.08 by going to pdf pages 135-136 for discussion of New Mexico's regulation.</ref><ref>[http://www.blm.gov/pgdata/etc/medialib/blm/nm/field_offices/socorro/socorro_planning/socorro.Par.77588.File.dat/Final_Air_Quality_Impact_Analysis.pdf Air Quality Impact Analysis, Section 2.2] Developed for the [[United States Bureau of Land Management]], Socorro Field Office, New Mexico. See pdf page 18 of 44 pdf pages.</ref> | ||
The change of atmospheric pressure with altitude can be obtained from this equation:<ref>[http://www.dtc.army.mil/pdf/810f-change2.pdf | The change of atmospheric pressure with altitude can be obtained from this equation:<ref>[http://www.dtc.army.mil/pdf/810f-change2.pdf United States Department of Defense MIL-STD-810F, 30 August 2002] (See page 161 of 164 pdf pages)</ref> | ||
Line 76: | Line 76: | ||
|align=left|= atmospheric pressure at altitude '''h''' | |align=left|= atmospheric pressure at altitude '''h''' | ||
|- | |- | ||
!align=right| '''''C''''' | !align=right| '''''C''''' | ||
|align=left|= Air pollutant concentration, in mass per unit volume at sea level atmospheric pressure and specified temperature T | |align=left|= Air pollutant concentration, in mass per unit volume at sea level atmospheric pressure and specified temperature T | ||
|- | |- | ||
Line 92: | Line 92: | ||
==Correcting concentrations for reference conditions== | ==Correcting concentrations for reference conditions== | ||
Many environmental protection agencies have issued regulations that limit the concentration of pollutants in gaseous [[Emission standards|emissions]] and define the reference conditions applicable to those concentration limits. For example, such a regulation might limit the concentration of [[Nitrogen oxide|NOx]] to 55 ppmv in a dry combustion exhaust gas (at a specified reference temperature and pressure) corrected to 3 volume percent [[Oxygen|O<sub>2</sub>]] in the dry gas. As another example, a regulation might limit the concentration of | Many [[Natural environment|environmental]] protection agencies have issued regulations that limit the concentration of pollutants in gaseous [[Emission standards|emissions]] and define the reference conditions applicable to those concentration limits. For example, such a regulation might limit the concentration of [[Nitrogen oxide|NOx]] to 55 ppmv in a dry combustion exhaust gas (at a specified reference temperature and pressure) corrected to 3 volume percent [[Oxygen|O<sub>2</sub>]] in the dry gas. As another example, a regulation might limit the concentration of total particulate matter to 200 mg/m<sup>3</sup> of an emitted gas (at a specified reference temperature and pressure) corrected to a dry basis and further corrected to 12 volume percent [[Carbon dioxide|CO<sub>2</sub>]] in the dry gas. | ||
Environmental agencies in the USA often use the terms "dscf" or "scfd" to denote a "standard" cubic foot of dry gas. Likewise, they often use the terms "dscm" or "scmd" to denote a "standard" cubic meter of gas. Since there is no universally accepted set of "standard" temperature and pressure, such usage can be and is very confusing. It is strongly recommended that the reference temperature and pressure always be clearly specified when stating gas volumes or gas flow rates. (See [[Reference conditions of gas temperature and pressure]] for more explanation) | Environmental agencies in the USA often use the terms "dscf" or "scfd" to denote a "standard" cubic foot of dry gas. Likewise, they often use the terms "dscm" or "scmd" to denote a "standard" cubic meter of gas. Since there is no universally accepted set of "standard" temperature and pressure, such usage can be and is very confusing. It is strongly recommended that the reference temperature and pressure always be clearly specified when stating gas volumes or gas flow rates. (See [[Reference conditions of gas temperature and pressure]] for more explanation) | ||
Line 111: | Line 111: | ||
|- | |- | ||
!align=right|'''''w''''' | !align=right|'''''w''''' | ||
|align=left|= fraction, by volume, of the emitted gas | |align=left|= fraction, by volume, of the emitted gas that is water vapor | ||
|} | |} | ||
Line 151: | Line 151: | ||
:<math>C_\mathrm r = C_\mathrm m\cdot\frac {(\mathrm{ | :<math>C_\mathrm r = C_\mathrm m\cdot\frac {(\mathrm{reference\,volume\,%\,CO_2})}{(\mathrm{measured\,volume\,%\,CO_2})}</math> | ||
{| border="0" cellpadding="2" | {| border="0" cellpadding="2" | ||
Line 165: | Line 165: | ||
|} | |} | ||
As an example, a measured | As an example, a measured particulates concentration of 200 mg/m<sup>3</sup> in a dry gas that has a measured 8 volume % CO<sub>2</sub> is: | ||
:200 × ( 12 ÷ 8 ) = 300 mg/m<sup>3</sup> | :200 × ( 12 ÷ 8 ) = 300 mg/m<sup>3</sup> | ||
Line 172: | Line 172: | ||
==References== | ==References== | ||
{{reflist}} | {{reflist}}[[Category:Suggestion Bot Tag]] | ||
[[Category: |
Revision as of 11:01, 7 July 2024
This article may be deleted soon. | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Air pollutant concentrations, as measured or as calculated by air pollution dispersion modeling[1], must often be converted or corrected to be expressed as required by the regulations issued by various governmental agencies. Regulations that define and limit the concentration of pollutants in the ambient air or in gaseous emissions to the ambient air are issued by various national and state (or provincial) environmental protection and occupational health and safety agencies. Such regulations involve a number of different expressions of concentration. Some express the concentrations as ppmv (parts per million by volume) and some express the concentrations as mg/m3 (milligrams per cubic meter), while others require adjusting or correcting the concentrations to reference conditions of moisture content, oxygen content or carbon dioxide content. This article presents methods for converting concentrations from ppmv to mg/m3 (and vice versa) and for correcting the concentrations to the required reference conditions. All of the concentrations and concentration corrections in this article apply only to air and other gases. They are not applicable for liquids. Converting air pollutant concentrationsThe conversion equations depend on the temperature at which the conversion is wanted (usually about 20 to 25 °C). At an ambient sea level atmospheric pressure of 1 atm (101.325 kPa or 1.01325 bar), the general equation is: and for the reverse conversion:
Notes:
Correcting concentrations for altitudeAir pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m3, µg/m3, etc.) at sea level will decrease with increasing altitude. The concentration decrease is directly proportional to the pressure decrease with increasing altitude. Some governmental regulatory jurisdictions require industrial sources of air pollution to comply with sea level standards corrected for altitude. In other words, industrial air pollution sources located at altitudes well above sea level must comply with significantly more stringent air quality standards than sources located at sea level (since it is more difficult to comply with lower standards). For example, New Mexico's Department of the Environment has a regulation with such a requirement.[2][3] The change of atmospheric pressure with altitude can be obtained from this equation:[4]
Given an air pollutant concentration at sea-level atmospheric pressure, the concentration at higher altitudes can be obtained from this equation:
As an example, given an air pollutant concentration of 260 mg/m3 at sea level, calculate the equivalent pollutant concentration at an altitude of 2800 meters:
Note:
Correcting concentrations for reference conditionsMany environmental protection agencies have issued regulations that limit the concentration of pollutants in gaseous emissions and define the reference conditions applicable to those concentration limits. For example, such a regulation might limit the concentration of NOx to 55 ppmv in a dry combustion exhaust gas (at a specified reference temperature and pressure) corrected to 3 volume percent O2 in the dry gas. As another example, a regulation might limit the concentration of total particulate matter to 200 mg/m3 of an emitted gas (at a specified reference temperature and pressure) corrected to a dry basis and further corrected to 12 volume percent CO2 in the dry gas. Environmental agencies in the USA often use the terms "dscf" or "scfd" to denote a "standard" cubic foot of dry gas. Likewise, they often use the terms "dscm" or "scmd" to denote a "standard" cubic meter of gas. Since there is no universally accepted set of "standard" temperature and pressure, such usage can be and is very confusing. It is strongly recommended that the reference temperature and pressure always be clearly specified when stating gas volumes or gas flow rates. (See Reference conditions of gas temperature and pressure for more explanation) Correcting to a dry basisIf a gaseous emission sample is analyzed and found to contain water vapor and a pollutant concentration of say 40 ppmv, then 40 ppmv should be designated as the "wet basis" pollutant concentration. The following equation can be used to correct the measured "wet basis" concentration to a "dry basis" concentration:
As an example, a wet basis concentration of 40 ppmv in a gas having 10 volume percent water vapor would have a:
Correcting to a reference oxygen contentThe following equation can be used to correct a measured pollutant concentration in a dry emitted gas with a measured O2 content to an equivalent pollutant concentration in a dry emitted gas with a specified reference amount of O2:[5]
As an example, a measured NOx concentration of 45 ppmv in a dry gas having 5 volume % O2 is:
when corrected to a dry gas having a specified reference O2 content of 3 volume %. Note:
Correcting to a reference carbon dioxide contentThe following equation can be used to correct a measured pollutant concentration in an emitted gas (containing a measured CO2 content) to an equivalent pollutant concentration in an emitted gas containing a specified reference amount of CO2:[5]
As an example, a measured particulates concentration of 200 mg/m3 in a dry gas that has a measured 8 volume % CO2 is:
when corrected to a dry gas having a specified reference CO2 content of 12 volume %. References
|
- Pages using ISBN magic links
- Articles for deletion November
- Editable Main Articles with Citable Versions
- CZ Live
- Engineering Workgroup
- Chemical Engineering Subgroup
- Environmental Engineering Subgroup
- Emergency management Subgroup
- Articles written in American English
- Advanced Articles written in American English
- All Content
- Engineering Content
- Chemical Engineering tag
- Environmental Engineering tag
- Emergency management tag