Prym varieties: Difference between revisions
imported>David E. Volk (subpages, tags moved to metadata, and typos) |
imported>Paul Wormer m (typo) |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
If C is an algebraic | If C is an algebraic curve, and <math>\tau</math> is a fixed point free involution on C, then the '''prym variety''' of the double cover <math>C\to(C/\tau)</math> is | ||
<math>Prym(C,\tau) = Im(1-\tau) = </math> Connected component of Norm<sup>-1</sup>(0) containing the identity. (see p.297 of ref 1) | <math>Prym(C,\tau) = Im(1-\tau) = </math> Connected component of Norm<sup>-1</sup>(0) containing the identity. (see p.297 of ref 1) | ||
Latest revision as of 08:08, 12 January 2010
If C is an algebraic curve, and is a fixed point free involution on C, then the prym variety of the double cover is Connected component of Norm-1(0) containing the identity. (see p.297 of ref 1)
references and further reading
Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J. Geometry of algebraic curves. Vol. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 267. Springer-Verlag, New York, 1985. xvi+386 pp. ISBN: 0-387-90997-4
Donagi, Ron; Smith, Roy Campbell The structure of the Prym map. Acta Math. 146 (1981), no. 1-2, 25--102.
Donagi, Ron The fibers of the Prym map. Curves, Jacobians, and abelian varieties (Amherst, MA, 1990), 55--125, Contemp. Math., 136, Amer. Math. Soc., Providence, RI, 1992.
Mumford, David, Prym varieties. I. Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 325--350. Academic Press, New York, 1974.
arXiv:0804.4616 The Kodaira dimension of the moduli space of Prym varieties Gavril Farkas, Katharina Ludwig Journal of the European Mathematical Society