Semigroup: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(new entry, just a stub)
 
imported>Richard Pinch
(subpages)
Line 1: Line 1:
{{subpages}}
In [[algebra]], a '''semigroup''' is a set equipped with a binary operation satisfying certain properties similar to but less stringent than those of a group.  A motivating example of a semigroup is the set of positive [[integer]]s with [[multiplication]] as the operation.
In [[algebra]], a '''semigroup''' is a set equipped with a binary operation satisfying certain properties similar to but less stringent than those of a group.  A motivating example of a semigroup is the set of positive [[integer]]s with [[multiplication]] as the operation.



Revision as of 01:16, 9 November 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In algebra, a semigroup is a set equipped with a binary operation satisfying certain properties similar to but less stringent than those of a group. A motivating example of a semigroup is the set of positive integers with multiplication as the operation.

Formally, a semigroup is a set S with a binary operation satisfying the following conditions:

  • S is closed under ;
  • The operation is associative.

A commutative semigroup is one which satisfies the further property that for all x and y in S. Commutative semigroups are often written additively.

A subsemigroup of S is a subset T of S which is closed under the binary operation.

A semigroup homomorphism f from semigroup to is a map from S to T satisfying

Examples

  • The non-negative integers under addition form a commutative semigroup.
  • The positive integers under multiplication form a commutative semigroup.
  • Square matrices under matrix multiplication form a semigroup, not in general commutative.
  • Every monoid is a semigroup, by "forgetting" the identity element.
  • Every group is a semigrpup, by "forgetting" the identity element and inverse operation.

Cancellation property

A semigroup satisfies the cancellation property if

and

A semigroup is a subsemigroup of a group if and only if it satisfies the cancellation property.